Аксонометрия инженерная графика. Диметрия и изометрия. Примеры аксонометрических проекций различных предметов

Что такое диметрия

Диметрия представляет собой один из видов аксонометрической проекции. Благодаря аксонометрии при одном объемном изображении можно рассматривать объект сразу в трех измерениях. Поскольку коэффициенты искажений всех размеров по 2-м осям одинаковы, данная проекция и получила название диметрия.

Прямоугольная диметрия

При расположении оси Z" вертикально, при этом оси Х" и Y" образуют с горизонтального отрезка углы 7 градуса 10 минут и 41 градус 25 минут. В прямоугольной диметрии коэффициент искажения по оси Y будет составлять 0,47, а по осям Х и Z в два раза больше, то есть 0,94.

Чтобы осущесвить построение приближенно аксонометрические оси обычной диметрии, необходимо принять, что tg 7 градусов 10 минут равен 1/8, а tg 41 градуса 25 минут равен 7/8.

Как построить диметрию

Для начала необходимо начертить оси, чтобы изобразить предмета в диметрии. В любой прямоугольной диметрии углы, находящиеся между осями Х и Z, равны 97 градусов 10 минут, а между осями Y и Z – 131 градусов 25 минут и между Y и Х – 127 градусов 50 минут.

Теперь требуется нанести оси на ортогональные проекции изображаемого предмета, учитывая выбранное положение предмета для вычерчивания в диметрической проекции. После того, как завершите перенос на объемное ихображение габаритных размеров предмета, можете приступать к чертежу незначительных элементов на поверхности предмета.

Стоит запомнить, что окружности в каждой плоскости диметрии изображаются соответствующими эллипсами. В диметрической проекции без искажения по осям Х и Z большая ось нашего эллипса во всех 3-х плоскостях проекции будет составлять 1,06 диаметра нарисованной окружности. А малая ось эллипса в плоскости ХОZ составляет 0,95 диаметра, а в плоскости ZОY и ХОY – 0,35 диаметра. В диметрической проекции с искажением по осям Х и Z большая ось эллипса равняется диаметру окружности во всех плоскостях. В плоскости ХОZ малая ось эллипса составляет 0,9 диаметра, а плоскостях ZОY и ХОY равны 0,33 диаметра.

Чтобы получить более детально изображение, необходимо выполнить вырез через детали на диметрии. Заштриховку при вычеркивании выреза следует наносить параллельно проведенной диагонали проекции выбранного квадрата на необходимую плоскость.

Что такое изометрия

Изометрия является одним из видов аксонометрической проекции, где расстояния единичных отрезков на всех 3-х осях одинаковые. Изометрическая проекция активно используется в машиностроительных чертежах, чтобы отобразить внешний вид предметов, а также в разнообразных компьютерных играх.

В математике изометрия известна как преобразование метрического пространства, которое сохраняет расстояние.

Прямоугольная изометрия

В прямоугольной (ортогональной) изометрии аксонометрические оси создают между собой углы, которые равны 120 градусам. Ось Z находится в вертикальном положении.

Как начертить изометрию

Построение изометрии предмета дает возможность получить наиболее выразительное представление о пространственных свойствах изображаемого объекта.

Перед тем, как начать построение чертежа в изометрической проекции, необходимо выбрать такое расположение изображаемого предмета, чтобы были максимально видны его пространственные свойства.

Теперь вам требуется определиться с видом изометрии, которую будете чертить. Существует два ее вида: прямоугольная и горизонтальная косоугольная.

Нарисуйте оси легкими тонкими линиями, чтобы изображение получилось по центру листа. Как уже раньше говорилось, углы в прямоугольном виде изометрической проекции должны составлять 120 градусов.

Начинайте рисовать изометрию с именно верхней поверхности изображения предмета. От углов получившейся горизонтальной поверхности нужно провести две вертикальные прямые и отложить на них соответствующие линейные размеры предмета. В изометрической проекции все линейные размеры по всех трем осям будут оставаться кратны единице. Затем последовательно требуется соединить созданные точки на вертикальных прямых. В результате получиться внешний контур предмета.

Стоит учитывать, что при изображении любого предмета в изометрической проекции видимость криволинейных деталей будет обязательно искажаться. Окружность должна изображаться эллипсом. Отрезок между точками окружности (эллипса) по осям изометрической проекции должен быть равен диаметру окружности, а оси эллипса не будут совпадать с осями изометрической проекции.

Если изображаемый объект имеет скрытые полости ли сложные элементы, постарайтесь выполнить заштриховку. Она может быть простой либо ступенчатой, все зависит сложности элементов.

Запомните, что все построение должно выполнять строго с применением чертежных инструментов. Применяйте несколько карандашей с разными видами твердости.

В изометрической проекции все коэффициенты равны между собой:

к = т = п;

3 к 2 = 2,

k = yj 2УЗ - 0,82.

Следовательно, при построении изометрической проекции размеры предмета, откладываемые по аксонометрическим осям, умножают на 0,82. Такой перерасчет размеров неудобен. Поэтому изометрическую проекцию для упрощения, как правило, выполняют без уменьшения размеров (искажения) по осям х, у, I, т.е. принимают приведенный коэффициент искажения равным единице. Получаемое при этом изображение предмета в изометрической проекции имеет несколько большие размеры, чем в действительности. Увеличение в этом случае составляет 22% (выражается числом 1,22 = 1: 0,82).

Каждый отрезок, направленный по осям х, у, z или параллельно им, сохраняет свою величину.

Расположение осей изометрической проекции показано на рис. 6.4. На рис. 6.5 и 6.6 показаны ортогональные (а) и изометрические (б) проекции точки А и отрезка Л В.

Шестигранная призма в изометрии. Построение шестигранной призмы по данному чертежу в системе ортогональных проекций (слева на рис. 6.7) приведено на рис. 6.7. На изометрической оси I откладывают высоту Н, проводят линии, параллельные осям хиу. Отмечают на линии, параллельной оси х, положение точек / и 4.

Для построения точки 2 определяют координаты этой точки на чертеже - х 2 и у 2 и, откладывая эти координаты на аксонометрическом изображении, строят точку 2. Таким же образом строят точки 3, 5 и 6.

Построенные точки верхнего основания соединяют между собой, проводят ребро из точки / до пересечения с осью х, затем -

ребра из точек 2 , 3, 6. Ребра нижнего основания проводят параллельно ребрам верхнего. Построение точки Л, расположенной на боковой грани, по координатам х А (или у А) и 1 А очевидно из

Изометрия окружности. Окружности в изометрии изображаются в виде эллипсов (рис. 6.8) с указанием величин осей эллипсов для приведенных коэффициентов искажения, равных единице.

Большая ось эллипсов расположена под углом 90° для эллипсов, лежащих В ПЛОСКОСТИ хС>1 к ОСИ у, В ПЛОСКОСТИ у01 К ОСИ X, в плоскости хОу К ОСИ?.


При построении изометрического изображения от руки (как рисунка) эллипс выполняют по восьми точкам. Например, лоточкам 1, 2, 3, 4, 5, 6, 7 и 8 (см. рис. 6.8). Точки 1, 2, 3 и 4 находят на соответствующих аксонометрических осях, а точки 5, 6, 7 и 8 строят по величинам соответствующих большой и малой осей элипса. При вычерчивании эллипсы в изометрической проекции можно заменять овалами и строить их следующим образом 1 . Построение показано на рис. 6.8 на примере эллипса, лежащего в плоскости xOz. Из точки / как из центра, делают засечку радиусом R = D на продолжении малой оси эллипса в точке О, (строят также аналогичным образом и симметричную ей точку, которая на чертеже не показана). Из точки О, как из центра проводят дугу CGC радиуса D, которая является одной из дуг, составляющих контур эллипса. Из точки О, как из центра проводят дугу радиуса O^G до пересечения с большой осью эллипса в точках О у Проводя через точки О р 0 3 прямую, находят в пересечении с дугой CGC точку К, которая определяет 0 3 К - величину радиуса замыкающей дуги овала. Точки К являются также точками сопряжения дуг, составляющих овал.

Изометрия цилиндра. Изометрическое изображение цилиндра определяется изометрическими изображениями окружностей его основания. Построение в изометрии цилиндра высотой Н по ортогональному чертежу (рис. 6.9, слева) и точки С на его боковой поверхности показано на рис. 6.9, справа.


Предложено Ю.Б. Ивановым.

Пример построения в изометрической проекции круглого фланца с четырьмя цилиндрическими отверстиями и одним треугольным приведен на рис. 6.10. При построении осей цилиндрических отверстий, а также ребер треугольного отверстия использованы их координаты, например координаты х 0 и у 0 .


ГОСТ 2.317-68* устанавливает прямоугольные и косоугольные аксонометрические проекции.

Построение аксонометрических проекций заключается в том, что геометрическую фигуру вместе с осями прямоугольных координат, к которым эта фигура отнесена в пространстве, параллельным (прямоугольным или косоугольным) способами проецируют на выбранную плоскость проекций. Таким образом, аксонометрическая проекция - это проекция на одну плоскость. При этом направление проецирования выбирают так, чтобы оно не совпадало ни с одной из координатных осей.

При построении аксонометрических проекций изображаемый предмет жестко связывают с натуральной системой координат Oxyz. В целом аксонометрический чертеж получается состоящим из параллельной проекции предмета, дополненной изображением координатных осей с натуральными масштабными отрезками по этим осям. Название «аксонометрия» и произошло от слов - аксон - ось и метрео - измеряю.

Виды аксонометрических проекций

Аксонометрические проекции в зависимости от направления проецирования разделяют на:

  • косоугольные , когда направление проецирования не перпендикулярно плоскости аксонометрических проекций;
  • прямоугольные , когда направление проецирования перпендикулярно плоскости аксонометрических проекций.

В зависимости от сравнительной величины коэффициентов искажения по осям различают три вида аксонометрии:

  • изометрия - все три коэффициента искажения равны между собой;
  • диметрия - два коэффициента искажения равны между собой и отличаются от третьего;
  • триметрия - все три коэффициента искажения не равны между собой.

Прямоугольная изометрия

В прямоугольной изометрии углы между осями равны 120°. При построении изометрической проекции по осям х, у, z и параллельно им откладывают натуральные размеры предмета. Отсюда название «изометрия», что по-гречески означает «равные измерения»


Построение изометрических проекций плоских геометрических фигур

Рассмотрим построение треугольника на горизонтальной плоскости в изометрической проекции. При построении первоначально необходимо определить расположение фигуры относительно начала координат. Для этого по оси х откладывают расстояние m, равное смещению оси треугольника относительно оси у. Из найденной точки проводят прямую, параллельную оси у, и на ней откладывают отрезок, равный k - смещению основания треугольника от оси х, получили точку 1. Симметрично точке 1 по прямой, параллельной оси х, в обе стороны откладывают отрезки, равные половине основания треугольника – найдены точки 3, 4. Из точки 1 по прямой, параллельной оси у, откладывают отрезок, равный высоте треугольника – определена точка 2. Полученные точки соединяют. Аналогично строят фронтальную и профильную проекцию фигуры.

Аксонометрия

Аксонометрия (от греч. axcon – ось и metreo – измеряю) дает наглядное изображение предмета на одной плоскости.

Изображение предмета в аксонометрии получается путем параллельного проецирования его на одну плоскость проекций вместе с осями прямоугольных координат, к которым этот предмет отнесен.

Коэффициенты искажения по осям в аксонометрии определяют отношением аксонометрических координатных отрезков к их натуральной величине при одинаковых единицах измерения.

Натуральные коэффициенты искажения обозначают:

  • по оси x u ;
  • по оси y v ;
  • по оси z w .

В зависимости от сравнительной величины коэффициентов искажения по осям различают три вида аксонометрии:

Изометрия – все три коэффициента искажения равны между собой: u=v=w .

Диметрия – два коэффициента искажения равны между собой и отличаются от третьего u=v≠w ; v=w≠u ; u=w≠v .

Триметрия – все три коэффициента искажения не равны между собой: u≠v≠w .

В зависимости от направления проецирования аксонометрические проекции разделяют на прямоугольные (направление проецирования перпендикулярно плоскости аксонометрических проекций) и косоугольные (направление проецирования не перпендикулярно плоскости аксонометрических проекций).

Прямоугольные проекции

Изометрия

Положение аксонометрических осей приведено на рис.1.


Рис.1.

Коэффициент искажения по осям x , y , z равен 0,82.

Изометрию для упрощения, как правило, выполняют без искажения по осям x , y , z , т. е. приняв коэффициент искажения равным 1.

Построенное таким образом изображение будет больше самого предмета в 1,22 раза, т.е. масштаб изображения будет М 1,22:1 .

Окружности, лежащие в плоскостях, параллельных плоскостям проекций проецируются на аксонометрическую плоскость проекций в эллипсы (рис.2). Если изометрическую проекцию выполняют без искажения по осям x , y , z , то большая ось эллипсов 1, 2, 3 равна 1,22, а малая ось – 0,71 диаметра окружности. Если изометрическую проекцию выполняют с искажением по осям x , y , z , то большая ось эллипсов 1, 2, 3 равна диаметру окружности, а малая ось – 0,58 диаметра окружности.

Пример изометрической проекции детали приведен на рис.3.

Диметрия

Положение аксонометрических осей приведено на рис.4.


Рис.4.

Коэффициент искажения по оси y равен 0,47, а по осям x и z – 0,94.

Диметрическую проекцию, как правило, выполняют без искажения по осям x и z и с коэффициентом искажения 0,5 по оси y .

Аксонометрический масштаб будет М 1,06:1 .

Окружности, лежащие в плоскостях, параллельных плоскостям проекций, проецируются на аксонометрическую плоскость проекций в эллипсы (рис.5). Если диметрическую проекцию выполняют без искажения по осям x и z , то большая ось эллипсов 1, 2, 3 равна 1,06 диаметра окружности, а малая ось эллипса 1 – 0,95, эллипсов 2 и 3 – 0,35 диаметра окружности. Если диметрическую проекцию выполняют с искажением по осям x и z , то большая ось эллипсов 1, 2, 3 равна диаметру окружности, а малая ось эллипса 1 – 0,9, эллипсов 2 и 3 – 0,33 диаметра окружности.

Пример диметрической проекции детали приведен на рис.6.

Косоугольные проекции

Изометрия фронтальная

Положение аксонометрических осей приведено на рис.7.

Допускается применять фронтальные изометрические проекции с углом наклона оси у 30 и 60°.

Фронтальную изометрическую проекцию выполняют без искажения по осям x , y , z .

Окружности, лежащие в плоскостях, параллельных фронтальной плоскости проекций, проецируются на аксонометрическую плоскость в окружности, а окружности, лежащие в плоскостях, параллельных горизонтальной и профильной плоскостям проекций, – в эллипсы (рис.8). Большая ось эллипсов 2 и 3 равна 1,3, а малая ось – 0,54 диаметра окружности.

Пример фронтальной изометрической проекции детали приведен на рис.9.

Изометрия горизонтальная

Положение аксонометрических осей приведено на рис.10.

Допускается применять горизонтальные изометрические проекции с углом наклона оси y 45 и 60°, сохраняя угол между осями x и y 90°.

Горизонтальную изометрическую проекцию выполняют без искажения по осям x , y и z .

Окружности, лежащие в плоскостях, параллельных горизонтальной плоскости проекций, проецируются на аксонометрическую плоскость проекций в окружности, а окружности, лежащие в плоскостях, параллельных фронтальной и профильной плоскостям проекций – в эллипсы (рис.11). Большая ось эллипса 1 равна 1,37, а малая ось – 0,37 диаметра окружности. Большая ось эллипса 3 равна 1,22, а малая ось – 0,71 диаметра окружности. Оси фронтальной диметрии

Допускается применять фронтальные диметрические проекции с углом наклона оси у 30 и 60°.

Коэффициент искажения по оси y равен 0,5, а по осям x и z – 1.

Окружности, лежащие в плоскостях, параллельных фронтальной плоскости проекций, проецируются на аксонометрическую плоскость проекций в окружности, а окружности, лежащие в плоскостях, параллельных горизонтальной и профильной плоскостям проекций, – в эллипсы (рис.14). Большая ось эллипсов 2 и 3 равна 1,07, а малая ось – 0,33 диаметра окружности.

Пример фронтальной диметрической проекции детали приведен на рис.15.

Инструкция

При проектировании на плоскость аксонометрических проекций П’ натуральной системы координат Oxyz получится аксонометрическая система координат O’x’y’z’, а проекция любой точки – аксонометрической проекцией или аксонометрией A’ ( 1). Если перенести с эпюра горизонтальную проекцию точки A₁ в новую систему, это будет так называемая вторичная проекция и будет иметь аксонометрические координаты.

Отношение аксонометрических координат к натуральным показателями искажения по осям. Они u, v, w, а величина углов между аксонометрическими осями – соответственно α, β и γ.
Существуют различные виды аксонометрии. В машиностроительном чаще применяется прямоугольная аксонометрия. В зависимости от величины показателей искажения u, v, w прямоугольная аксонометрия делится на виды:

Изометрия – показатели искажения по всем трем осям равны между собой u=v=w.
- диметрия – показатели искажения равны по двум осям u=w≠v.

Обычно показатели искажения u, v, w имеют дробные значения, но для упрощения построений используются их приведенные значения. Например, в изометрии приведенные координаты равны натуральным.

Пример. Построить прямоугольную изометрическую проекцию призмы (рисунок 2).
Комплексный чертеж призмы задан в системе осей xyz, начало координат – точка О.

Постройте аксонометрические оси O’x’y’z’. Углы между осями α, β, γ равны 120⁰ (рисунок 3).

В аксонометрических осях постройте вторичную проекцию призмы. Пусть начало координат точка O’ и ось z’ пройдет через основную ось призмы z. Все размеры с комплексного чертежа перенесите на оси x’O’y’ без изменений, т.к. коэффициенты искажения по осям равны 1.
От точки O’ отложите отрезок О₁1₁ и О₁4₁ по оси x’. Отметьте точки 1’ и O’, а по оси y’ отложите отрезок О₁А₁. Получите точки O’, A’.

На эпюре отрезок 6₁5₁ параллелен оси x₁, значит, и отрезок 6’5’ проведите параллельно оси x’. Отложите на нем расстояние А₁6₁ и А₁5₁. Отметьте полученные точки 6’, 5’ и аналогично постройте симметричные им точки 2’, 3’.

Определите положение точек 7’ и 8’, отложив размеры 7₁А₁. Таким образом, в аксонометрической проекции построена вторичная проекция основания призмы – 1’,2’,…8’. Из каждой точки проведите прямые, параллельные оси Z’. На этих прямых отложите высоту каждой точки с фронтальной проекции призмы на эпюре.
От точки 1’ отложите отрезок 1₂9₂, а от точек 2’ и 6’ – отрезок 2₂10₂. От остальных точек 3’, 4’ и т.д. отложите отмеченную высоту h. Соединив все построенные точки, получите аксонометрию данной призмы.

Просмотров