Радикальная полимеризация. Инициирование радикальной полимеризации Мономеры способные вступать в реакции радикальной полимеризации

5.1.1. Радикальная полимеризация

Механизм полимеризации

Простейшая схема кинетической цепи при химическом инициировании может быть представлена как такая последовательность реакций:

1. Инициирование (химическое):

а) образование первичных свободных радикалов

б) зарождение материальной цепи

2. Рост материальной цепи:

3. Обрыв материальной цепи:

а) рекомбинация

б) диспропорционирование

в) передача цепи (рост кинетической цепи);

на молекулу полимера

на молекулу мономера

на молекулу растворителя

При описании процесса полимеризации делаются следующие допущения:

  • активность (реакционная способность) свободного радикала зависит только от природы атома, на котором локализован неспаренный электрон, и от его ближайшего окружения;
  • средняя длина кинетической цепи велика;
  • в реакционной среде устанавливается стационарное состояние, т.е. скорость инициирования равна скорости гибели свободных радикалов.

Взаимодействие свободнорадикальных частиц относится к быстрым химическим реакциям. Однако сближение реагирующих частиц протекает существенно медленнее. На рис. 5.1 приведена одномерная схема, иллюстрирующая определяющую роль диффузионных процессов на всех этапах реакции полимеризации.

Активные частицы окружены молекулами растворителя (среды), образующими


Рис. 5.1. Схема реализации "эффекта клетки":

I - растворитель; II - "дырка"; III -реагирующая частица

"клетку", внутри которой их движение возможно как серия "перескоков" в вакантные пустоты - "дырки". Сближение реагирующих частиц и выход продуктов реакции из этой "клетки" является диффузионно-контролируемым процессом. Эта особенность процесса определяется как "эффект пленения", или "эффект клетки" (эффект Франка - Рабиновича).

Вопрос. 2,2"-азо-бис -изобутиронитрил (динитрил азодиизомасляной кислоты - ДАК, порофор ЧХЗ) широко используется в экспериментальной и производственной практике в качестве вещества, легко генерирующего в результате термического распада активные свободные радикалы по схеме

Этот процесс начинается в растворе уже при 40°С. Вместе с тем было установлено, что увеличение вязкости реакционной среды приводит к уменьшению К d . Какова возможная причина этого эффекта?

Ответ. Уменьшение скорости распада инициатора при повышении вязкости реакционной среды может быть обусловлено двухстадийностью этой реакции: вначале образуются радикалы


С увеличением вязкости среды "эффект клетки" тормозит разделение первоначально возникшей радикальной пары, препятствуя тем самым выходу активных частиц из "клетки". В связи с этим вторая стадия процесса полного распада этого соединения на свободные радикалы протекает с меньшей скоростью.

Зарождение цепи (инициирование) . Процесс образования активных центров протекает сравнительно медленно и требует затраты определенного количества энергии. Эта начальная стадия радикальной полимеризации носит название зарождения (инициирования) цепи и приводит к образованию свободных (вторичных) радикалов из валентно-насыщенных молекул мономера. Свободные радикалы в полимеризующейся системе могут образовываться различными способами: под влиянием тепла, света, ультразвука, жесткого излучения (рентгеновские, α-, β- и γ-лучи - физическое инициирование),

а также при введении химических инициаторов полимеризации, т.е. веществ, легко распадающихся на свободные радикалы. Возбуждение реакции полимеризации при введении инициаторов получило широкое применение при получении волокнообразующих полимеров, так как при этом облегчается регулирование процесса синтеза. Распад инициатора требует подвода внешней энергии и протекает с определенной скоростью. Например, инициаторами свободнорадикальной полимеризации являются соединения, способные распадаться: по связи ~О~О~ (I) или по связи (II).

I. Энергия диссоциации этой связи равна 150-160 кДж/моль. К соединениям этого типа относятся:


II. Энергия диссоциации этой связи равна 295 кДж/моль. Использование азосоединений в качестве инициаторов предопределяется

2,2"-азо-бис -изобутиронитрил

NC-C(CH 3) 2 -N=N-C(CH 3) 2 -CN.

Скорость образования первичных свободных радикалов описывается уравнением скорости реакции первого порядка:

В результате интегрирования и последующего преобразования имеем

где [I] t и [I] 0 - текущая и начальная концентрации инициатора; t - время; K d - константа скорости реакции распада инициатора на свободные радикалы.

Задача. Определить константу скорости распада пероксида бензоила в диоксане при 80°С, если начальная концентрация его была 1,1%, а через 10 мин иодометрически в системе было обнаружено 1,07% пероксида бензоила.

Решение . Согласно уравнению (5.2),

ln = exp / Kd ) = 151,9 кДж/моль.

Оценка значений ΔE d позволяет выбрать наиболее целесообразную температурную область синтеза волокнообразующих полимеров. В табл. 5.1 приводятся значения кажущейся энергии активации ΔE d и константы скорости K d для некоторых инициаторов. При проведении синтеза ниже 85°С целесообразно применять ДАК. При более высоких температурах лучшие результаты дает использование пероксида бензоила и др.

Таблица 5.1. Кинетические характеристики некоторых инициаторов полимеризации


Реакцию полимеризации при температурах ниже 70°С целесообразно проводить, используя неорганические пероксиды.

Продолжительность стадии инициирования сокращается при увеличении количества свободных радикалов.

Для увеличения скорости распада инициаторов, например пероксидов, в реакционную смесь вводят "промоторы" - восстановители. Окислительно-восстановительные инициирующие системы широко используются для проведения синтеза различных карбоцепных полимеров. Инициирование процесса полимеризации путем применения окислительно-восстановительных систем характеризуется небольшим температурным коэффициентом (сравнительно малой кажущейся энергией активации).

Таким образом, под воздействием физических или химических факторов в системе появляются свободные, радикалы, имеющие, например, неспаренные p -электроны и обладающие вследствие этого высокой химической активностью. Соударения свободных радикалов приводят к возникновению ковалентной связи между ними с образованием неактивной молекулы. При взаимодействии свободного радикала с неактивной молекулой образуется продукт реакции, имеющий тоже один неспаренный электрон и обладающий почти той же активностью, что и исходный свободный радикал. Эти процессы могут быть иллюстрированы схемой

R * + R * → R: R; R * + М → R: М * .

Склонность к реакциям присоединения ограничивает время жизни свободных радикалов. Например, полупериод жизни радикала Н 3 С * составляет 10 -4 с. Однако сопряжение неспаренного p -электрона [например, в трифенилметиле (С 6 Н 5) 3 С * ] или же экранизация его заместителями, входящими в состав свободного радикала, например в дифенилпикрилгидразиле

резко повышает стабильность свободных радикалов.

В результате химического инициирования свободный радикал становится концевой группой растущей полимерной цепи.

Время, необходимое для зарождения цепи, называется индукционным периодом. Вещества, увеличивающие индукционный период, называются ингибиторами. Не все свободные радикалы, взаимодействуя с мономерами, инициируют реакцию. Часть их после взаимного столкновения дезактивируется. Отношение количества радикалов, присоединившихся к мономеру и инициирующих реакцию, к общему количеству всех образовавшихся радикалов называется эффективностью инициатора f э. Эффективность инициатора может быть оценена одним из трех методов:

  • сравнением скорости разложения инициатора и скорости образования полимерных молекул (эта методика требует точного измерения средней молекулярной массы полимера);
  • сравнением количества инициатора, соединенного с полимером, с количеством разложившегося инициатора;
  • применением ингибитора, обрывающего кинетические цепи.

Например, применение дифенилпикрилгидразила позволяет осуществить обрыв цепи по схеме


Задача. Рассчитать эффективность 2,2"-азо-бис -изобутиронитрила, если при полимеризации стирола исходная концентрация инициатора составляла 1,1%, а за 20 мин реакции на 100 г мономера выделилось 80 см 3 азота (в пересчете на нормальные условия). Степень превращения мономера достигла 5%. Молекулярная масса полученного полимера 2500 (определена осмометрическим методом).

Решение. При распаде молекулы инициатора образуется два свободных радикала и выделяется молекула азота. Рассчитываем число молей инициатора в начале реакции на 100 г мономера:

[I] 0 = 1,1/164 = 0,007 = 7 · 10 -3 .

Количество выделившегося азота составит

80/(22,4 · 1000) = 3,5 · 10 -3 .

Таким образом, за 20 мин реакции разложилось 3,5 · 10 -3 моль инициатора и, следовательно, образовалось 7 · 10 -3 моль радикалов. При степени превращения 5% и средней молекулярной массе 2500 количество образовавшихся молей полимера составляет

5/2500 = 2 · 10 -3 .

Примем, что все кинетические цепи закончились рекомбинацией радикалов и, следовательно, на 1 моль полимера расходовался 1 моль инициатора. Отсюда находим эффективность инициатора f э:

f э = 2,0 · 10 -3 /(3,5 · 10 -3) = 0,6.

В общем случае скорость распада инициатора V 0 = K d [I].

Для большинства применяемых инициаторов f э находится в пределах 0,3-0,8, т.е. практически всегда f э f э изменяется в зависимости от среды: природы и количества инициатора, мономера, растворителя и т.д.

Например, при инициировании полимеризации акрилонитрила динитрилом азодиизомасляной кислоты в диметилформамиде и 51,5%-м водном растворе NaCNS величина K d f э во втором случае оказывается существенно меньшей вследствие большого проявления "эффекта клетки" (возрастает вязкость среды, а также проявляются специфические сольватационные эффекты).

Многочисленными экспериментальными данными установлено, что при постоянной концентрации мономера скорость полимеризации пропорциональна корню квадратному из концентрации инициатора ("правило квадратного корня"):

где К - суммарная константа скорости полимеризации; [М] - концентрация мономера; [I] - концентрация инициатора;

где K d - константа скорости распада инициатора; К p - константа скорости роста полимерной цепи; К 0 - константа скорости обрыва цепи.

Вопрос. Гетерофазная полимеризация винилхлорида в присутствии пероксида бензоила протекает в изотермических условиях в 6-8 раз медленнее, чем в присутствии динитрила азодиизомасляной кислоты. Объясните возможную причину этого явления.

Ответ . Пероксид бензоила очень мало растворим в воде. Поэтому скорость инициирования достигает заметной величины лишь после того, как концентрация частиц инициатора в дисперсии окажется достаточно большой [см. уравнение (5.3)]. Динитрил азодиизомасляной кислоты лучше растворяется в воде, в связи с этим индукционный период процесса полимеризации, который определяет общую продолжительность процесса, в этом случае будет меньше.

Продолжение (рост) цепи. Реакциями продолжения (роста) кинетической цепи называются элементарные

стадии цепной реакции, протекающие с сохранением свободной валентности и приводящие к расходованию исходных веществ и образованию продуктов реакции. При полимеризации эта последовательность реакций обусловливает рост полимерной цепи:


Рост цепи - быстро протекающая стадия процесса полимеризации, описываемая уравнением (5.3). Скорость полимеризации возрастает также при увеличении концентрации мономера в реакционной среде.

Обрыв цепи. Обрывом кинетической цепи называется стадия цепного процесса, приводящая к исчезновению свободной валентности. Обрыв кинетической цепи может происходить:

в результате рекомбинации, т.е. взаимодействия двух одинаковых или различных свободных радикалов,

или диспропорционирования, т.е. передачи протона от одного радикала к другому, с потерей активности продуктов реакции, т.е.


Энергия активации первой реакции - рекомбинации - близка к нулю и, во всяком случае, не превышает 0,5-1,5 кДж/моль, тогда как энергия активации диспропорционирования достигает значений 16-18 кДж/моль.

Прекращение роста макромолекулы может происходить в результате рекомбинации и диспропорционирования макрорадикалов.

Вместе с тем такой же эффект наблюдается при встрече полимерного радикала (макрорадикала) с неактивной молекулой. Прекращение роста макромолекулы в результате переноса неспаренного электрона инертной молекуле называется передачей кинетической цепи ("радикал отропией"). Этот процесс может приводить к присоединению атома водорода к растущей полимерной цепи:

В роли RH могут выступать молекулы инициатора, растворителя, мономера, неактивного полимера или макрорадикала и др. Константы скоростей этих реакций будут соответственно К п i , K п s , K п м, K п п.

Вопрос. В процессе свободнорадикальной полимеризации наряду с линейными макромолекулами образуются разветвленные. Напишите вероятную схему образования таких разветвлений при полимеризации винилацетата в присутствии пероксида бензоила.

Ответ. При высоких степенях превращения образовавшиеся макромолекулы (и макрорадикалы) могут подвергаться воздействию подвижных свободных радикалов. Наиболее уязвимой частью макромолекулы являются атомы водорода у третичных углеродных атомов:


Обрыв кинетической цепи приводит к уменьшению степени полимеризации образующегося высокомолекулярного соединения. Иногда для регулирования скорости процесса и молекулярной массы полимеров в реакционную смесь вносят специальные вещества (гидрохинон, нитробензол и др.), называемые ингибиторами полимеризации. Их действие основано на связывании

активных центров кинетической цепи. Длина кинетической цепи v составляет

где V р и V t - скорости роста и обрыва цепи соответственно.

С помощью ингибиторов полимеризации можно варьировать в относительно широких пределах выход и свойства образующегося полимера (средняя молекулярная масса, степень полидисперсности).

Вопрос. В начальные периоды свободнорадикальной полимеризации образуются полимеры с максимальной молекулярной массой. По мере увеличения степени превращения мономера (выхода полимера) молекулярная масса его обычно уменьшается. Объясните вероятную причину этого явления.

Ответ . По мере увеличения степени превращения число растущих кинетических цепей в реакционной среде возрастает, что обусловливает повышение вероятности рекомбинационных процессов.

Полимеризация является сложным процессом и часто не может быть описана одним стехиометрическим уравнением, так как в ряде случаев обрыв цепей приводит к появлению некоторых побочных продуктов. Однако при достаточно большой длине кинетической цепи полимеризацию можно с достаточным приближением описать одним стехиометрическим уравнением. Скорость цепной реакции v равна произведению скорости инициирования цепи v i и длины кинетической цепи v :

При этом v = (1 - β)/β, где β - вероятность обрыва цепи на каждой стадии роста. Длину кинетической цепи v можно вычислить исходя из соотношения

Задача. Определить значение К р /К

может быть определено из уравнения стационарной скорости полимеризации, хорошо описывающего процесс в начальной его стадии [уравнение (5.3)]. После преобразования уравнений (5.3) и (5.4) получаем

ln([M] 0 /[M] t ) = (K p /K

)V i t . В присутствии акцепторов свободных радикалов процесс замедляется (ингибируется). Если С инг - концентрация ингибитора, то скорость реакции инициирования может быть рассчитана из зависимости

V i = C инг t i .

Согласно этой эмпирической зависимости, для любой произвольно выбранной концентрации ингибитора (например, 0,2 моль/дм 3) можно рассчитать соответствующее значение t , а следовательно, и скорость инициирования:

  • t = 2 · 10 -5 + 2857 · 0,2 = 571 мин;
  • V i = 1 · 10 -1 /571 = 5,83 · 10 -6 моль/(дм 3 · с).

Для двух моментов времени ≥t i можно вычислить значение К р /К

= = 0,25.

В соответствии с уравнениями (5.3) и (5.4) имеем

где f э - эффективность инициатора; K d - константа скорости разложения инициатора; [М] - концентрация мономера; [I] - концентрация инициатора.

Ранее отмечалось, что величины f э и K d можно измерять раздельно. Экспериментально определяются также V p , [I], [M]. Найдя таким образом K

= 2,34 · 10 -7 .

При малых степенях конверсии суммарная скорость полимеризации V удовлетворительно описывается уравнением (5.8). Температурная зависимость V , характеризуемая кажущейся энергией активации процесса синтеза, описывается равенством

ΔE об = 1/2ΔE i - ΔE р + 1/2ΔE o ,

где ΔE i , ΔE p и ΔE o - кажущиеся энергии активации стадий инициирования, роста и обрыва цепи соответственно.

Для большинства виниловых мономеров

  • ΔE i = 130 ± 10 кДж/моль; ΔE p = 25 + 5 кДж/моль;
  • ΔЕ o = 6 ± 2 кДж/моль.

Это означает, что с повышением температуры во всех случаях скорость реакции полимеризации возрастает.

Длина кинетической цепи v в изотермических условиях синтеза определяется только природой мономера.

В реакцию полимеризации вступают соединения, которые содержат по крайней мере одну кратную связь или циклы. Реакционная способность мономера зависит от его строения, сопряжения двойной связи в молекуле мономера, количества и взаимного расположения заместителей, их поляризационного явления на двойную связь.

Радикальная полимеризация протекает по цепному механизму и описывается кинетикой неразветвленной цепной реакции.

Основные стадии цепной реакции:

  1. Инициирование - образование активных центров;
  2. Рост цепи - последовательное присоединение мономеров к активному центру;
  3. Обрыв цепи - гибель активного центра;
  4. Передача цепи - передача активного центра на другую молекулу.

I. Инициирование цепи (зарождение)

Данная стадия является самой энергоемкой. Различают физическое и химическое инициирование.

Физическое инициирование:

Химическое инициирование

Данный способ инициирования применяется чаще всего. Принцип заключается в использовании веществ-инициаторов (перекиси, азосоединения, red-ox системы), у которых энергия обрыва химической связи значительно меньше, чем у мономеров. При этом процесс происходит в две стадии: сначала генерируются радикалы инициатора, которые затем присоединяются к молекуле мономера, образуя первичный мономерный радикал.



Инициатор очень похож по свойствам на катализатор, но его отличие состоит в том, что инициатор расходуется в процессе химической реакции, а катализатор - нет.

Примеры инициаторов:


II. Рост Цепи

Мономеры поочередно присоединяются к активному центру первичного мономерного радикала.


III. Обрыв цепи

Обрыв цепи происходит в результате гибели активных центров (обрыв кинетической цепи).

  • Обрыв кинетической цепи - исчезают активные центры;
  • Обрыв материальной цепи - когда данная цепь перестает расти, но активный центр передается другой макромолекуле или мономеру (реакция передачи цепи).

Реакции приводящие к гибели кинетической и материальной цепи – реакции рекомбинации и диспропорционирования.

Вид реакции обрыва цепи (рекомбинация или диспропорционирование) зависит от ряда факторов, в частности от строения молекулы мономера. Если мономер содержит громоздкий по размеру или электроотрицательный по химической природе заместитель, то столкновения таких растущих радикалов друг с другом не происходит и обрыв цепи осуществляется путем диспропорционирования. Например, в случае метилметакрилата:

По мере роста радикалов увеличивается вязкость системы, и вследствие подвижности макрорадикалов скорость обрыва цепи путем рекомбинации снижается. Рост времени жизни макрорадикалов при увеличении вязкости системы приводит к интересному явлению – ускорению полимеризации на поздних стадиях (гель-эффект ) вследствие увеличения концентрации макрорадикалов.

IV. Передача цепи

Передача цепи происходит путём отрыва растущим радикалом атома или группы атомов от какой-то молекулы. Реакция передача цепи приводит к обрыву материальной цепи, а рост кинетической продолжается.

Различают передачу цепи:


Особенности радикальной полимеризации:

  • Высокая скорость полимеризации;
  • Разветвленность;
  • Возможны присоединения г-г, г-хв, хв-хв;
  • Полимолекулярные полимеры.

Кинетика радикальной полимеризации

Химическая кинетика - это раздел химии, изучающий механизм и закономерности протекания химической реакции во времени, зависимости этих закономерностей от внешних условий.

Для изучения кинетики радикальной полимеризации необходимо рассмотреть зависимость скорости реакции и степени полимеризации от концентрации исходных веществ, давления и температуры.

Обозначения:

I. Влияние концентрации исходных веществ на скорость реакции.

Общая скорость реакции зависит от скорости образования радикалов V ин (скорости инициирования) , от скорости роста цепи V р и ее обрыва V o.

Мы будем рассматривать реакцию свободнорадикальной полимеризации, когда инициирование осуществляется с помощью химических инициаторов.

Рассмотрим каждую стадию:


Рассмотрение кинетики существенно облегчается, если реакция протекает в условиях, близких к стационарному режиму , при котором скорости возникновения и исчезновения свободных радикалов можно считать равными . При этом концентрация активных центров будет постоянна.


Как видно из графика кривой можно выделить пять участков по значениям скоростей основной реакции превращения мономера в полимер в результате полимеризации:

1 - участок ингибирования, где концентрация свободных радикалов мала. И они не могут начать цепной процесс полимеризации;

2 - участок ускорения полимеризации, где начинается основная реакция превращения мономера в полимер, причем скорость растет;

3 - участок стационарного состояния , где происходит полимеризация основного количества мономера при постоянной скорости (прямолинейная зависимость конверсии от времени);

4 - участок замедления реакции, где скорость реакции уменьшается в связи с убылью содержания свободного мономера;

5 - прекращение основной реакции после исчерпания всего количества мономера.Стационарный режим наблюдается обычно на начальной стадии протекания реакции, когда вязкость реакционной массы невелика и равновероятны случаи зарождения цепи и ее обрыва.


Таким образом скорость реакции роста цепи равна:


II. Влияние концентрации исходных веществ на степень полимеризации.

Степень полимеризации зависит от соотношения скоростей роста и обрыва цепи:

Учтем соответствующие выражения для скоростей


Степень полимеризации равна:


III. Влияние температуры на скорость реакции роста цепи.

Выполним подстановку уравнения Аррениуса в уравнение скорости роста цепи:

Прологарифмируем полученное выражение:

Числитель (6+15-4 = 17) больше нуля, значит, чем больше температура, тем выше скорость реакции радикальной полимеризации. Однако с ростом температуры увеличивается и вероятность столкновения радикалов друг с другом (обрыв цепи путем диспропорционирования или рекомбинации) или с низкомолекулярными примесями. В результате молекулярная масса полимера в целом уменьшается, увеличивается доля низкомолекулярных фракций в полимере. Возрастает число побочных реакций, приводящих к образованию разветвленных молекул. Увеличивается нерегулярность при построении цепи полимера вследствие возрастания доли типов соединения мономера «голова к голове» и «хвост к хвосту».


Энергия активации роста ~ 6 ккал/моль;

Энергия активации инициирования ~30 ккал/моль;

Энергия активации обрыва ~8 ккал/моль.

Числитель (6-15-4 = -13) меньше нуля, значит с ростом температуры степень полимеризации уменьшается. В результате молекулярная масса полимера в целом уменьшается, увеличивается доля низкомолекулярных фракций в полимере.

V. Влияние давления на скорость полимеризации

Принцип Ле-Шателье: Если на систему оказывается внешнее воздействие, то в системе активируются процессы, ослабляющие это воздействие.

Чем выше давление, тем выше скорость радикальной полимеризации. Однако чтобы повлиять на свойства конденсированных систем, нужно прикладывать давление в несколько тысяч атмосфер.

Особенностью полимеризации под давлением является то, что увеличение скорости не сопровождается уменьшением молекулярной массы получаемого полимера.

Ингибиторы и замедлители полимеризации.

Явления обрыва и передачи цепи широко используются на практике для:

  • предотвращения преждевременной полимеризации при хранении мономеров;
  • для регулирования процесса полимеризации

В первом случае к мономерам добавляют ингибиторы или стабилизаторы , которые вызывают обрыв цепи, а сами превращаются в соединения, не способные инициировать полимеризацию. Также они разрушают пероксиды, образующиеся при взаимодействии мономера с атмосферным кислородом.

Ингибиторы : хиноны, ароматические амины, нитросоединения, фенолы.

Регуляторы полимеризации вызывают преждевременный обрыв материальной цепи, снижая молекулярную массу полимера пропорционально введенному количеству регулятора. Примером их являются меркаптаны.

Термодинамика радикальной полимеризации

Реакция роста цепи обратима, наряду с присоединением мономера к активному центру может происходить и его отщепление-деполимеризация.

Термодинамическая возможность полимеризации, как и любой другой равновесный химический процесс можно описать с помощью функций Гиббса и Гельмгольца:


Однако функция Гиббса наиболее приближена к реальным условиям, поэтому мы воспользуемся ей:

Так же изменение функции Гиббса связано с константой равновесия реакции уравнением:

Константа полимеризационно-деполимеризационного равновесия при достаточно большом молекулярном весе образующегося полимера (p>>1) зависит только от равновесной концентрации мономера:

Откуда следует, что


Из уравнения (а) можно найти такую температуру, при которой реакция полимеризации не будет идти, а из уравнения (б) можно найти равновесную концентрацию мономера, при превышении которой будет происходить полимеризация.

Влияние температуры

Для определения влияния температуры на равновесную концентрацию мы представим уравнение (б) в следующем виде:


В случае, когда ΔH°<0 и ΔS°<0 с ростом температуры увеличивается равновесная концентрация мономера. Верхний предел ограничен концентрацией мономера в массе. Это значит, что есть некоторая верхняя предельная температура - Т в.пр. , выше которой полимеризация невозможна.

В случае, когда ΔH°>0 и ΔS°>0 наблюдается обратная зависимость: с уменьшением температуры увеличивается равновесная концентрация мономера. Следовательно, для мономеров с отрицательным тепловым эффектом существует нижняя предельная температура Т н.пр.

Так же есть известные случаи, когда эти зависимости не пересекаются, но они не представляют практического интереса.


Термодинамическая вероятность

Теперь рассмотрим термодинамическую возможность протекания реакции, условием которой является равенство ΔG<0. Оно определяется как изменением энтальпии так и энтропии, причем вклад энтропийного члена будет изменяться с температурой реакции.


При полимеризации по кратным связям энтропия системы всегда уменьшается, т.е. процесс по энтропийным соображениям невыгоден. Слабая зависимость ∆S° от природы мономера связана с тем, что основной вклад в ∆S° вносит потеря поступательных степеней свободы молекул мономеров.

Но также известны мономеры, для которых при полимеризации происходит увеличение энтропии. Такое изменение ∆S° характерно для некоторых ненапряженных циклов. Причем, поскольку полимеризация оказывается выгодной с энтропийной точки зрения, она может протекать даже при отрицательных тепловых эффектах (полимеризация циклов S 8 и Se 8 с образованием линейных полимеров)

Расчеты и измерения энтропии для полимеризации большинства виниловых мономеров показывают, что ∆S° составляет около 120 Дж/К·моль.

Напротив, ∆Н° изменяется в зависимости от химического строения мономера в довольно широких пределах (∆Q° = −∆Н° варьируется от нескольких кДж/моль до 100 кДж/моль), что обусловлено различием природы кратной связи и ее заместителей. Отрицательные значения ∆Н° свидетельствуют о том, что полимеризация выгодна с точки зрения энтальпийного фактора. При обычных температурах порядка 25°С полимеризация термодинамически разрешима для мономеров, тепловой эффект которых превышает 40 кДж/моль. Это условие соблюдается для большинства виниловых мономеров. Однако, при полимеризации по С=О связи тепловые эффекты ниже 40 кДж/моль. Поэтому условие ∆G<0 соблюдается только при достаточно низких температурах, когда |TΔS°|<|ΔH°|.

Рассмотрим явление несоответствия теоретической и практической энтальпии полимеризации

Выделяется меньшее количество энергии, куда она девается?

  1. Разрушается эффект сопряжения;
  2. Стерическое отталкивание (при синтезе полистирола образуется спиральная молекула за счет стерического отталкивания).

Причина возрастания Q при полимеризации циклов - термодинамчески не выгодный валентный угол между гибридизованными орбиталями и отталкивание неподеленных электронных пар заместителя.

  1. Раскрытие цикла (ΔS 1 ° > 0)
  2. Рост цепи (ΔS 2 ° < 0)

ΔS° = ΔS 1 ° + ΔS 2 °, ΔS° может быть больше или меньше нуля.

Радикальная полимеризация, как правило, представляет собой разновидность цепных реакций. Такие реакции протекают под влиянием свободных радикалов, образующихся в начале процесса и реагирующих далее с нейтральными молекулами с образованием новых реакционноспособных радикалов.

Цепная полимеризация может инициироваться методами, известными для газофазных цепных реакций, в том числе ультрафиолетовым излучением. Один акт инициирования цепной полимеризации ведет к соединению друг с другом тысяч мономерных молекул. Другими признаками радикального цепного характера реакции полимеризации являются влияние примесей и формы реакционного сосуда на ее скорость, специфический s-образный вид кинетической кривой (зависимость степени превращения мономера в полимер от времени, рис. 5).

Рис. 5. Типичная кинетическая s-образная кривая полимеризации

Радикальная полимеризация имеет три характерные для цепных реакций стадии: инициирование, рост и обрыв цепи.

Для инициирования
реакции необходимо, чтобы в системе осуществилось получение (генерирование) свободных радикалов в результате теплового воздействия (термическое инициирование), светового (фотоинициирование), радиоактивного облучения (радиационное инициирование), введение химических инициаторов (химическое радикальное инициирование) и др. Термическое инициирование применяется редко, так как связано с большими затратами энергии, и при этом плохо поддаются регулированию как сам процесс реакции, так и свойства готового полимера. Фотоинициирование применяется главным образом для изучения механизма реакций полимеризации. Оно состоит в возбуждении молекулы мономера в результате поглощения кванта света и в генерировании затем свободных радикалов. В отличие от термической полимеризации скорость фотополимеризации не зависит от температуры, так как энергия активации ее значительно ниже. Скорость растет с увеличением интенсивности облучения. В этом случае подтверждением цепного характера реакции является протекание полимеризации после удаления источника света (рис. 6).

Рис. 6. Скорость полимеризации бутадиена: 1 - при освещении, 2 – после прекращения освещения

Радиационная полимеризация в принципе аналогична фотополимеризации. Скорость ее также растет с увеличением интенсивности облучения и не зависит от температуры. Скорость радиационной и фотополимеризации может быть увеличена добавлением веществ, которые легко распадаются под действием радиационного излучения или света (так называемые сенсибилизаторы полимеризации), например полигалогениды - CCl4, C2Cl6 и др.

Термический, фото - и радиационный способы инициирования цепной реакции полимеризации либо мало эффективны, либо сопровождаются протеканием различных побочных явлений (разветвление, деструкция цепей и т. д.). Поэтому на практике чаще всего применяется химическое инициирование, которое осуществляется специально вводимыми в систему легко распадающимися на радикалы веществами - инициаторами. Наиболее распространены среди них перекиси, азо - и диазосоединения. Распад этих соединений на радикалы может быть осуществлен различными путями, включая нагревание, фотохимическое разложение и др. Например, при легком нагревании перекись бензоила распадается по схеме

а гидроперекись изопропиленбензола так:

Динитрил азоизомасляной кислоты (азо-бис-изобутиронитрил) распадается с выделением азота:

Свободные радикалы (R·) легко реагируют с молекулой мономера:

которая становится свободным радикалом и реагирует со следующей молекулой мономера, и таким образом осуществляется реакция роста цепи. Поскольку стабильность радикалов, образующихся при распаде перекисей, азосоединений и других инициаторов, разная, то и скорость их реакции с молекулами мономера, а следовательно, и скорость полимеризации различны. Для облегчения распада инициаторов и снижения энергии активации стадии инициирования в реакцию вводят восстановители (амины и другие соединения, соли металлов переменной валентности).

Стадия роста цепи требует значительно меньшей энергии активации - 25,1-33,5 кДж/моль (6-8 ккал/моль), чем стадия инициирования - 84-126 кДж/моль (20-30 ккал/моль), и представляет взаимодействие растущих свободных радикалов с молекулами мономера, что приводит в итоге к образованию макромолекулы полимера:

Нейтральная макромолекула образуется на стадии обрыва цепи, энергия активации которой 8-17 кДж/моль (2-4 ккал/моль):

Такой обрыв цепи происходит в результате столкновения двух растущих макрорадикалов (рекомбинация). Возможно также диспропорционирование таких радикалов с образованием двух нейтральных молекул:

Причиной обрыва цепи может быть также присоединение к макрорадикалу низкомолекулярных веществ, присутствующих в системе (инициаторы, ингибиторы и др.). Время жизни растущих радикалов мало (обычно несколько секунд). По мере роста радикалов увеличивается вязкость системы, и вследствие уменьшения подвижности макрорадикалов скорость обрыва цепи путем рекомбинации снижается. Время жизни радикалов возрастает также при снижении температуры. Рост времени жизни макрорадикалов при увеличении вязкости системы приводит к интересному явлению - ускорению полимеризации на поздних стадиях (гель-эффект) вследствие увеличения концентрации макрорадикалов.

Как можно видеть из приведенных схем реакций роста и обрыва цепи, образуются макромолекулы полимера разной молекулярной массы. Широкий разброс значений молекулярной массы для образца полимера обычно приводит к ухудшению его механических свойств. Поэтому при получении полимера стремятся регулировать его молекулярную массу, что можно осуществить путем направленного изменения скорости роста цепи.

Для этой цели пользуются реакцией передачи цепи, которая заключается в том, что вводимое в систему вещество - регулятор - обрывает растущую цепь, но при этом само становится свободным радикалом и начинает новую кинетическую цепь реакции полимеризации. Таким образом, в данном случае обрывается материальная цепь, а кинетическая продолжается, в то время как в обычной реакции обрыва происходит обрыв как кинетической, так и материальной цепи. Роль агентов передачи цепи могут выполнять растворитель (особенно активны галогенсодержащие соединения, например СС14), мономер или специально вводимые вещества (регуляторы), например меркаптаны.

(обрыв цепи)

(начало новой цепи)

или

Во всех случаях происходит рост новой макромолекулы полимера на каждый акт передачи цепи. Передача цепи может произойти также на молекулу полимера. В этом случае образуется разветвленная макромолекула. Повышение температуры и увеличение количества агента передачи цепи (например, галогенсодержащих углеводородов) приводят к резкому возрастанию скорости реакции передачи цепи, и эта реакция подавляет другие стадии полимеризации, так что образуются индивидуальные низкомолекулярные вещества, которые можно разделить (реакция теломеризации). Они содержат концевые группы из продуктов расщепления агента передачи цепи и являются активными в различных химических реакциях, в частности при получении новых полимеров.

Низкомолекулярные вещества, которые в результате реакции с радикалами мономеров предотвращают рост макромолекул или замедляют его, называются ингибиторами
или замедлителями. Они широко используются для предотвращения преждевременной полимеризации или снижения ее скорости, для получения полимеров желательной молекулярной массы и более регулярной структуры. Такими веществами являются бензохинон, нитробензол и др. (рис. 7).

Рис. 7. Термическая полимеризация стирола при 100°С в присутствии ингибиторов и замедлителей:

1 - без добавок; 2- 0,1% бензохинона (ингибитор); 3 - 0,2% нитробензола (ингибитор); 4- 0,5% нитробензола (замедлитель)

Замедлитель выполняет двоякую роль: уменьшает концентрацию радикалов и время их жизни, что приводит к снижению длины полимерной цепи. Ингибитор не влияет на скорость полимеризации, но предотвращает начало инициирования цепи, увеличивая индукционный период на кинетической кривой полимеризации. Величина индукционного периода обычно пропорциональна количеству введенного ингибитора. Одно и то же вещество может выступать и как ингибитор, и как замедлитель, и как регулятор полимеризации - в зависимости от природы полимеризуемого мономера. В этом отношении особенно интересен кислород, который, например, замедляет полимеризацию винилацетата и ускоряет полимеризацию стирола. При больших давлениях и высоких температурах кислород способствует полимеризации этилена, что используется в промышленном производстве полиэтилена высокого давления. Кислород образует перекиси или гидроперекиси при взаимодействии с мономерами или растущими цепями. В зависимости от стабильности эти промежуточные перекиси или гидроперекиси могут либо увеличивать концентрацию радикалов и ускорять полимеризацию, либо дезактивировать имеющиеся радикалы и замедлять или даже ингибировать полимеризацию.

Рассмотрение кинетических закономерностей радикальной полимеризации дало возможность сделать ряд важных в практическом и теоретическом отношении выводов о влиянии различных факторов на этот процесс. Установлено, что скорость инициирования пропорциональна концентрации инициатора, а общая скорость полимеризации в стационарном периоде (когда скорость инициирования равна скорости обрыва цепи и, следовательно, общая скорость равна скорости роста цепи) пропорциональна квадратному корню из концентрации инициатора и первой степени концентрации мoномера u = K[M]1/2. Что касается степени полимеризации, т. е. молекулярной массы, то она обратно пропорциональна квадратному корню из концентрации инициатора n = K`[M]/1/2. Физический смысл этого положения заключается в том, что с ростом концентрации инициатора растет и число радикалов, образующихся в системе. Эти радикалы реагируют с большим числом молекул мономера и тем увеличивают скорость их превращения в растущие макрорадикалы. Однако при общем увеличении концентрации радикалов повышается и вероятность их столкновения друг с другом, т. е. обрыва цепи полимеризации. Это приводит к снижению средней молекулярной массы полимера.

Аналогичным образом можно рассмотреть влияние температуры на кинетику радикальной полимеризации. Обычно скорость полимеризации возрастает в 2-3 раза при повышении температуры на 10°. Повышение температуры увеличивает скорость инициирования полимеризации, так как облегчает распад на радикалы инициаторов и их реакцию с молекулами мономера. Вследствие большей подвижности малых радикалов с повышением температуры увеличивается вероятность их столкновения друг с другом (обрыв цепи путем диспропорционирования или рекомбинации) или с низкомолекулярными примесями (ингибиторами). Во всех случаях молекулярная масса полимера снижается, т. е. средняя степень полимеризации уменьшается с ростом температуры. Таким образом повышается количество низкомолекулярных фракций полимера в общем балансе распределения макромолекул по их молекулярным массам, возрастает доля побочных реакций, приводящих к образованию разветвленных молекул, появляется химическая нерегулярность построения цепи полимера вследствие увеличения доли типов соединения мономера «голова к голове» и «хвост к хвосту».

Полимеризация

Полимеризация - это процесс получения высокомолекулярных соединений, при котором рост молекулярной цепи происходит в результате последовательного присоединения молекул низкомолекулярного вещества (мономера) к активному центру, локализованному на ее конце:

М i М* + М М i+1 М* и т. д.

где М i -цепь длиной в i звеньев; М* -- активный центр; М -- молекула мономера

По числу мономеров, участвующих в полимеризации, различают гомополимеризацию (один мономер) и сополимеризацию (два или более мономера).

В зависимости от химической природы активных Центров, участвующих в образовании молекулярных цепей (радикал или ион), различают радикальную и ионную полимеризации.

Радикальная полимеризация

Радикальная полимеризация всегда протекает по цепному механизму. Функции активных промежуточных продуктов при радикальной полимеризации выполняют свободные радикалы. К числу распространенных мономеров, вступающих в радикальную полимеризацию, относятся: этилен, винилхлорид, винилацетат, винилиденхлорид, тетрафторэтилен, акрилонитрил, метакрилонитрил, метилакрилат, метилметакрилат, стирол, бутадиен, хлоропрен и другие мономеры. Радикальная полимеризация обычно включает несколько элементарных химических стадий: инициирование, рост цепи, обрыв цепи и: передачу цепи. Обязательными стадиями являются инициирование и рост цепи.

Инициирование . Инициирование состоит в создании в реакционной.системе свободных радикалов, способных начинать реакцйонные цепи. Наиболее распротраненный метод инициирования полимеризации основан на проведении в среде мономера термического гомолитического разложения нестойких веществ - инициаторов . В качестве инициаторов широко используют различные типы пероксидов: диалкилпероксиды (пероксид ди-трет -бутила), гидропероксиды (гидропероксид кумила), перэфиры (трет -бутилпербензоат), ацилпероксид (пероксид бензоила) и др. Пероксиды, например, при нагревании распадаются по схеме полимеризация мономер стирол сополимер

Кроме пероксидов в качестве инициаторов широко используют азосоединения, из которых наибольшее распространение получил 2,2"-азобисизобутиронитрил (АИБН):

Инициаторы радикальной полимеризации обычно не отличаются селективным действием по отношению к различным мономерам, поэтому выбор инициатора чаще всего обусловливается температурой, при которой в каждом конкретном случае может быть достигнута желаемая скорость генерирования свободных радикалов. Так, АИБН применяют при 50--70 °С, пероксид бензоила при 80--95 о С, а пероксид трет -бутила при 120--140°С. Энергия активации инициирования обычно близка к энергии связи, разрывающейся при распаде инициаторов. и колеблется от 105 до 175 кДж/моль. Радикал, образующийся при распаде молекулы инициатора, присоединяется к двойной связи мономера и начинает реакционную цепь:

R* + СН 2 =СНХ R--СН 2 -СНХ*

Для инициирования радикальной полимеризации при комнатной или пониженной температуре могут быть использованы окислительно-восстановительные системы. Реакцию окисления -- восстановления проводят в среде, содержащей мономер. Полимеризацию вызывают свободные радикалы, образующиеся в качестве промежуточных продуктов реакции. Можно подобрать пары окислитель--восстановитель, растворимые в воде (пероксид водорода - сульфат двухвалентного железа; персульфат натрия -- тиосульфат натрия и др.) или в органических растворителях (органические пероксиды -- амины; органические пероксиды -- органические соли двухвалентного железа и др.). В соответствии с этим радикальную полимеризацию можно инициировать как в водных, так и в органических средах.

Типичный пример окислительно-восстановительной реакции в водной среде -- взаимодействие пероксида водорода с ионами двухвалентного железа:

Fe +2 + H 2 O 2 Fe +3 + ОН - + НО*

Радикал НО, присоединяясь к молекуле мономера, инициирует радикальную полимеризацию.

Примером окислительно-восстановительной реакции, инициирующей радикальную полимеризацию в органических средах, может служить взаимодействие пероксида бензоила с метиланилином:

Фотохимическое инициирование радикальной полимеризации основано на образовании свободных радикалов в результате гомолитического разрыва химических связей при поглощении кванта инициирующего излучения мономером либо специально введёнными фотоинициаторами или фотосенсабилизаторами.

При радиационно-химическом инициировании радикальной полимеризации используются излучения высокой энергии (-лучи, быстрые электроны, -частицы, нейтроны и др.). Энергия активации фотохимического и радиационно-химического инициирования близка к нулю. Особенностью двух последних способов инициирования является возможность мгновенного включения и выключения облучающего излучения, что важно при некоторых исследовательских работах.

Рост цепи . Рост цепи осуществляется последовательным присоединением молекул мономера к радикалам, возникающим в результате инициирования, например:

С 6 Н 5 -С(О)-О-СН 2 -СНХ* + СН 2 =СНХ

С 6 Н 5 -С(О)-О-CH 2 -CHX-CH 2 -СНХ*

С 6 Н 5 -С(О)-О-СН 2 -СНХ-СН 2 -СНХ + СН 2 =СНХ*

С 6 Н 5 -С(О)-О-СН 2 -СНХ-СН 2 -СНХ-СН 2 -СНХ*

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. .

С 6 Н 5 -С(О)-О-(СН 2 -СНХ) n -СН 2 -СНХ* + СН 2 =СНХ

С 6 Н 5 -С(О)-О-(СН 2 -СНХ) n+1 -СН 2 -СНХ* и т. д.

где k p -- константа скорости роста цепи.

Развитие кинетической цепи сопровождается образованием материальной цепи. Энергии активации реакций роста цепи лежат в пределах 12-40 кДж/моль.

Константы скорости и энергия активации роста цепи в первую очередь зависят от природы мономера. Растворители, не склонные к специфическому взаимодействию с молекулами мономера и растущими радикалами, не влияют на реакцию роста радикальной полимеризации.

Точный квантовохимический расчет энергий активации присоединения радикалов к двойным связям мономеров в большинстве случаев затруднителен. Однако использование полуэмпирического Правила Эванса - Поляни - Семенова, согласно которому энергия активации Е а связана с тепловым эффектом элементарной реакции Q соотношением Е а = A - Q (где A и - постоянные величины для аналогичных рядов), позволяет во. многих случаях оценить Е а и предсказать ее изменение в ряду однотипных мономеров.

Энергия активации присоединения мономера к радикалу тем ниже, т. е. мономер тем активнее, чем выше энергия сопряжения в радикале, который получается в результате присоединения этого мономера к исходному радикалу. Наоборот, энергия активации присоединения радикала к двойной связи тем ниже, т. е. реакционная способность радикала тем выше, чем ниже его энергия сопряжения. Таким образом, реакционные способности в ряду мономеров и соответствующих им радикалов изменяются антибатно. Например, реакционная способность в ряду виниловых мономеров с заместителями

С 6 Н 5 , -СН=СН 2 , -СОСН 3 , -СN, -СООR, CR, -OCOCH 3 , -OR

уменьшается слева направо. Реакционная способность соответствующих радикалов уменьшается справа налево. Поэтому, чем выше реакционная способность мономера, тем выше энергия активации реакции роста цепи, т. е. тем ниже скорость его радикальной полимеризации.

В приведённом кратком качественном рассмотрении не учтены полярные и пространственные эффекты, которые в ряде случаев оказывают существенное влияние на энергии активации радикальных процессов. Теория, рассматривающая реакционную способность мономеров и радикалов только с учетом, энергий сопряжения и не учитывающая полярных и пространственных эффектов, называется теорией идеальной радикальной реакционной способности .

Обрыв цепи . Реакции, ограничивающие кинетические и активационные цепи, называются реакциями обрыва. Обрыв приводит к исчезновению в системе активных радикалов или к замене их малоактивными радикалами, неспособными присоединять молекулы мономера. Обрыв цепи при радикальной полимеризации в основном происходит при взаимодействии двух растущих радикалов в результате их рекомбинации :

~CH 2 -CHX* + ~CH 2 -CHX* ~СН 2 -СНХ-СНХ-СН 2 ~

или диспропорционирования :

~CH 2 -CHX* + ~CH 2 -CHX* ~СН 2 -СН 2 Х + ~СН=СНХ

Реакция обрыва цепи включает поступательную диффузию макрорадикалов с образованием объединенного клубка, взаимное сближение активных концевых звеньев за счет сегментальной диффузии внутри объединенного клубка и непосредственное химическое взаимодействие реакционных центров с образованием «мертвых» макромолекул.

Энергия активации обрыва не превышает 6 кДж/моль и в основном определяется энергией активации взаимной диффузии радикалов.

Обрыв цепи может происходить при любой длине растущего макрорадикала. Поэтому при полимеризации образуются макромолекулы разной длины (разной степени полимеризации ). Этим объясняется полимолекулярность синтетических полимеров, описываемая соответствующими молекулярно-массовыми распределениями .

Цепи могут обрываться также при взаимодействии, радикалов с ингибиторами . В качестве ингибиторов могут использоваться малоактивные стабильные свободные радикалы, например дифенилпикрилгидразил, N-оксидные радикалы, которые сами не инициируют полимеризацию, но рекомбинируют или диспропорционируют с растущими радикалами. Ингибиторами могут служить также вещества, молекулы которых, взаимодействуя с активными радикалами, насыщают их свободные валентности, а сами превращаются в малоактивные радикалы. К числу последних относятся хиноны (например, бензохинон, дурохинон), ароматические ди- и тринитросоединения (динитробензол, тринитробензол), молекулярный кислород, сера и др. Ингибиторами могут быть также соединения металлов переменной валентности (соли трехвалентного железа, двухвалентной меди и др.), которые обрывают растущие цепи за счет окислительно-восстановительных реакций. Часто ингибиторы вводят в мономер для предотвращения их преждевременной полимеризации. Поэтому перед полимеризацией каждый мономер необходимо тщательно очищать от примесей и добавленного ингибитора.

Передача цепи . Ограничение материальных цепей при полимеризации может происходить не только путем реакции обрыва, но и в результате реакций передачи цепи, которые весьма характерны для радикальной полимеризации. При передаче цепи происходит отрыв растущим радикалом атома или группы атомов от какой-либо молекулы (передатчика цепи ). В результате радикал превращается в валентнонасыщенную молекулу и образуется новый радикал, способный к продолжению кинетической цепи. Таким образом, при реакциях передачи материальная цепь обрывается, а кинетическая - нет.

Передача цепи может осуществляться через молекулы мономера. Например, в случае винилацетата

~R* + СН2=СН-OCOCH 3 ~RH + СН 2 =СН-ОСОСН 2 *

где k M -- константа скорости передачи цепи на мономер.

При этом растущий радикал вместо того, чтобы присоединиться по двойной связи молекулы винилацетата, может оторвать один из атомов водорода ацетильной группы, насыщая свою свободную валентность и превращая молекулу мономера в активный радикал. Последний может реагировать с другой молекулой мономера, начиная рост новой макромолекулы:

СН2=СН-ОСОСН 2 *+ СН 2 =СН-ОСОСН 3 СН 2 =СН-ОСОСН 2 -СН 2 -СН*-ОСОСН 3

Способность молекул мономеров участвовать в реакции передачи цепи принято характеризовать константой самопередачи С М, равной отношению константы скорости передачи цепи на мономер. (k M) к константе скорости роста цепи (k P), т. е. С М = k M /k P . Для большинства мономеров винилового ряда, не содержащих подвижных групп или атомов, k M <

В присутствии растворителя роль передатчика цепи могут играть молекулы растворителя, например в случае толуола

~СН 2 -СНХ* + С 6 Н 5 СН 3 ~СН 2 -СН 2 Х + С 6 Н 5 СН 2 *

где k S --константа скорости передачи цепи.

Взаимодействие растущего радикала с молекулой передатчика цепи приводит к прекращению роста данной материальной цепи, т. е. снижает молекулярную массу образующегося полимера. Способность растворителей участвовать в передаче цепи при радикальной полимеризации данного мономера характеризуют константой передачи C S = k S /k P (табл.1). Реакции передачи цепи широко используются при синтезе полимеров для регулирования их молекулярных масс. Для уменьшения молекулярной массы синтезируемого полимера обычно применяют передатчики со значениями C S > 10 -3 , которые называют регуляторами , например

~СН 2 --СНХ + СС1 4 ~СН 2 --CHXCI + СС1 3 *

Таблица 1. Константы передачи цепи при радикальной полимеризации стирола при 60 оС.

Кинетика радикальной полимеризации . Скорость инициирования в присутствии распадающихся при нагревании инициаторов в условиях, при которых распад происходит по нецепному механизму, можно выразить уравнением

V ин = k ин [I] (1.1)

где [I] -- концентрация инициатора; k ин -- константа скорости инициирования.

Скорость роста цепи выражается уравнением

где k ip -- константа скорости присоединения мономера к радикалу со степенью полимеризации n = i; -- концентрация радикалов со степенью полимеризации i; [M] -- концентрация мономера.

При образовании полимеров большой молекулярной массы с хорошим приближением можно принять, что k p не зависит от степени полимеризации радикала (практически, начиная со степени полимеризации n = 3-4). Тогда выражение для v p упрощается:

где -- концентрация всех растущих радикалов.

Скорость исчезновения радикалов в результате рекомбинации и диспропорционирования описывается уравнением

D[R]/dt = k 0 [R] 2

где k 0 -- константа скорости обрыва (в предположении, что реакционная способность радикалов в реакциях обрыва не зависит от их степени полимеризации).

Общая скорость полимеризации, равная скорости исчезновения мономера в системе, при условии, что степень полимеризации образующегося полимера достаточно велика и мономер расходуется только на полимеризацию, идентична скорости роста цепей, т. е.

D[M]/dt v p = k p [R][M] (1.2)

Если в системе отсутствует ингибитор, то активные радикалы исчезают в результате их рекомбинации или диспропорционирования. В этом случае изменение концентрации радикалов описывается уравнением

D[R]/dt = v ин - k 0 [R] 2

Концентрацию радикалов [R], которую трудно измерить прямыми опытами, можно исключить из уравнения (1.2), приняв, что скорость образования радикалов равна скорости их исчезновения (условие квазистационарности ), т. е. d[R]/dt = 0. При радикальной полимеризации это условие обычно практически выполняется уже через несколько секунд после начала реакции. Поэтому

v ин = k 0 [R] 2

[R] = (v ин / k 0) 1/2

И -d[M]/dt = k p (v ин / k 0) 1/2 [M] (1.3)

Таким образом, скорость радикальной полимеризации имеет первый порядок по концентрации мономера и порядок 0,5 по концентрации инициатора, что, как правило, и наблюдается на опыте.

Степень полимеризации . Из кинетических данных можно рассчитать степень полимеризации Р n полученного полимера. Она равна отношению числа молекул мономера, включившихся за время полимеризации в состав полимерных цепей, к числу образовавшихся материальных цепей. Если полимеризация протекает в условиях квазистационарности в отсутствие ингибитора, то при достаточно малой глубине превращения, когда полимера в системе еще мало и, следовательно, скоростью передачи цепи на полимер и расходом мономера можно пренебречь

Р n = v p / v 0 + v пер (1.4)

где v 0 -скорость бимолекулярного обрыва цепи; v пер = (k М [M] + k S [S] x [R] - сумма скоростей передачи цепи на мономер и растворитель.

При рекомбинации двух радикалов образуется одна материальная цепь, т. е. происходит среднестатистическое удваивание Р n , поэтому в знаменателе уравнения (1.4) перед членом, соответствующим обрыву путем рекомбинации, необходимо поставить множитель Ѕ. Кроме того, при допущении, что доля полимерных радикалов, обрывающихся по механизму диспропорционирования, равна, а доля радикалов, гибнущих при рекомбинации, равна 1-, уравнение для Р n принимает вид

Тогда для величины, обратной Р n , получим:

Выразив концентрацию радикала через скорость полимеризации v р = k P [R][М] и используя константы С M и C S , окончательно получим:

Полученное уравнение связывает среднечисловую степень полимеризации со скоростью реакции, константами передачи цепи и концентрациями мономера и передающего агента. Из уравнения (1.5) следует, что максимальная среднечисловая степень полимеризации образующегося полимера, достижимая при данной температуре, в отсутствие других передающих агентов определяется реакцией передачи цепи на мономер, т. е. Р n макс С М -1 .

Выведенные выше уравнения справедливы для радикальной полимеризации при небольших степенях превращения мономера в полимер (не превышающих 10%). При больших, глубинах превращения наблюдаются отклонения, связанные с возрастанием вязкости реакционной среды при увеличении концентрации растворенного в ней полимера, что приводит к замедлению диффузии макрорадикалов и резко уменьшает вероятность их рекомбинации или диспропорционирования. В связи с этим эффективная константа скорости обрыва значительно уменьшается. Концентрация радикалов в системе возрастает, а скорость полимеризации увеличивается. Это явление называют гель-эффектом . Если при радикальной полимеризации образуется полимер, нерастворимый или ограниченно набухающий в реакционной среде, то эффекты, связанные с диффузионным торможением реакции бимолекулярного обрыва, проявляются, уже начиная с очень малых глубин превращения.

Радикальная полимеризация -- один из распространенных способов синтеза полимеров. Активным центром такой полимеризации являвшей свободный радикал. Как и всякий цепной процесс, радикальная полимеризация протекает через три основные стадии.

1. Инициирование (образование активного центра). На этой стадии происходит инициирование молекулы мономера с образованием первичного свободного радикала (R"*), легко взаимодействующего с различными ненасыщенными соединениями (мономерами):

В зависимости от способа образования свободных радикалов, начинающих реакционную цепь, различают несколько видов полимеризации: термическую, фотохимическую, радиационную и инициированную.

При термической полимеризации свободные радикалы образуются из мономеров под действием высоких температур (700--Ю00°С). Происходящий при этом разрыв двойной связи в молекуле приводит к появлению бирадикала:

который, взаимодействуя с молекулой мономера

образует более сложный бирадикал. Он, в свою очередь, превращается затем в мономакрорадикал. Следует, однако, отметить, что термическая полимеризация не имеет пока широкого практического значения, так как ее скорость сравнительно невелика.

Фотохимическая полимеризация инициируется при освещении молекул моно-мера. Возбужденная таким образом молекула мономера взаимодействует в результате соударения со второй молекулой с образованием бирадикала, который затем диспропорционируется в два монорадикала:

Радиационная полимеризация протекает при действии на мономеры б-, в-, г- и R-излучения. Образующиеся свободные радикалы инициируют затем реакцию полимеризации.

Однако наиболее распространенным и часто применяемым на практике методов полимеризации является инициированная полимеризация . Она активируется соединениями, которые легко распадаются на свободные радикалы в условиях полимеризации. Такие соединения называются инициаторами полимеризации. Они содержат в своих молекулах неустойчивые химические связи (О--О, N--N, S--S, О--N и др.), которые разрываются при гораздо меньшей энергии, чем это требуется для образования свободного радикала из молекулы мономера (при ее активации). Инициаторами могут быть органические пероксиды и гидропероксиды, некоторые азо- и диазосоединения и другие вещества:

пероксид бензола


гидропероксид изопропилбензола

(гипериз)


диазогидрат

Скорость распада инициатора на свободные радикалы можно увеличить не только повышением температуры, но и добавкой в реакционную среду специальных восстановителей -- промоторов и активаторов . Промоторы возбуждают химическую реакцию, действуя только в начале процесса, а активаторы поддерживают активность катализатора (инициатора) в течение всего процесса. Эти вещества способствуют образованию свободных радикалов из инициаторов при более низких температурах (окислительно-восстановительное инициирование). Роль таких добавок могут выполнять соли и других металлов, а также пирогаллол, третичные амины, аскорбиновая кислота и др.:

Количество вводимого инициатора обычно невелико (0,1 -- 1 %). Общая скорость радикальной полимеризации возрастает пропорционально корню квадратному из концентрации инициатора: , где -- концентрация инициатора. В то же время средняя степень полимеризации (Р) обратно пропорциональна корню квадратному из этой величины:

Таким образом, при увеличении концентрации инициатора ускоряется процесс радикальной (инициированной) полимеризации с одновременным снижением средней степени полимеризации.

2. Рост цепи. Реакция роста цепи заключается в многократном присоединении молекул мономера к усложняющемуся каждый раз радикалу с сохранением свободного электрона в концевом звене растущей макромолекулы. Другими словами, растущая макромолекулярная цепь должна оставаться в период ее роста свободным макрорадикалом:

В результате таких последовательных реакций присоединения двойная связь мономера превращается в простую, что сопровождается выделением энергии за счет разности энергий у- и р-связей.

3. Обрыв цепи. Конец роста цепи связан с исчезновением свободного электрона у последнего звена макромолекулы. Чаще всего это происходит в результате соединения между собой двух радикалов (реакция рекомбинации), что приводит к возникновению цепи, которая не способна к дальнейшему росту:

Однако свободные радикалы (макрорадикалы), являясь исключительно реакционноспособными частицами, взаимодействуют не только с мономерами, но и с растворителем, различными примесями и с образовавшимися макромолекулами. При этом неподеленный электрон (активный центр) может перейти на любую другую молекулу, например молекулу растворителя, которая, превращаясь в радикал, дает начало новой макромолекуле:

Такие реакции называются реакциями передачи цепи. В данном случае передача цепи происходит через растворитель -- четыреххлористый углерод. Вероятность такой передачи увеличивается с повышением температуры полимеризации. При этом скорость реакции полимеризации не уменьшается, но, поскольку реакционная цепь распадается здесь на несколько молекулярных цепей, степень полимеризации образующегося полимера заметно понижается. Изменяя таким образом соотношение количества мономера и растворителя, можно получать полимеры с различной молекулярной массой. Вещества, через которые осуществляется передача цепи и регулируется средняя молекулярная масса полимера, называются регуляторами . В качестве регуляторов применяют четыреххлористый углерод, тиолы, тиогликолевую кислоту и др.

Реакции обрыва и передачи цепи часто используются в практических целях для стабилизации мономеров при их хранении. Это необходимо для предотвращения преждевременной полимеризации мономеров и для управления процессом полимеризации в целом. Для этого часто используют ингибиторы (стабилизаторы), которые при взаимодействии со свободными радикалами образуют малоактивные частицы, не способные в дальнейшем инициировать процесс полимеризации.

Если требуется только уменьшить скорость полимеризации, а не остановить процесс окончательно, применяют специальные вещества -- замедлители . Характер действия ингибиторов и замедлителей практически одинаков, а различие между ними скорее количественное, чем качественное.

Методом радикальной полимеризации получены такие известные полимеры, как поливинилхлорид, полистирол, бутадиенстирольные каучуки, полиметилметакрилат и др. По реакционной способности при проведении радикальной полимеризации некоторые мономеры можно расположить в ряд:

бутадиен > стирол > метилметакрилат > акрилонитрил > винилхлорид

Просмотров