Спектр последовательности прямоугольных импульсов. Периодическая последовательность прямоугольных видеоимпульсов (пппви). Спектр периодической последовательности прямоугольных импульсов

Для определения спектров для различных видов импульсной модуляции найдем спектр самого носителя. Возьмем импульсный носитель с импульсами прямоугольной формы (рис. 3.10).

Рис. 3.10 Периодическая последовательность прямоугольных импульсов

Последовательность таких импульсов можно представить рядами Фурье.

, (3.32)

где - комплексная амплитуда k-ой гармоники;

- постоянная составляющая.

Найдем комплексные амплитуды для указанных пределов (рис. 3.10).

(3.33)

Постоянная составляющая

(3.34)

Подставим (3.33) и (3.34) в (3.32) и после преобразования получим:

(3.35)

Из выражения видно, что спектр линейчатый с огибающей, повторяющей спектр одиночного импульса (рис. 3.11). Другими словами, для импульсов одинаковой формы решетчатая функция вписывается в непрерывную S(jω).

Рис. 3.11 Спектр периодической последовательности импульсов

Постоянная составляющая А 0 /2 имеет при этом вдвое меньшее значение. Расстояние между составляющими гармоник равно основной частоте носителя ω 0 =2π/Т. Отсюда следует, что изменение периода Т следования импульсов приводит к изменению плотности дискретных составляющих, а изменение скважности Т/τ при неизменном периоде (т.е. изменение τ) вызывает сужение или расширение огибающей с сохранением ее формы, оставляя неизменным расстояние между линиями дискретного спектра. При достаточно большой плотности этих линий, когда между узлами размещается по крайней мере несколько линий спектра (Т>>τ), ширину спектра ω импульсного носителя можно считать практически такой же, как и для одиночного импульса. С приближением τ к Т эти спектры могут оказаться различными по ширине. На Рис. 3.12 изображены деформации спектра импульсного носителя при изменении Т, а на Рис. 3.13 при изменении τ для импульсов прямоугольной формы.

Рис. 3.12 Изменение характера спектра носителя при изменении

периода Т следования импульсов прямоугольной формы.

При неизменной амплитуде импульсов согласно выражению (3.25) огибающая дискретного спектра увеличивается пропорционально увеличению площади импульсов (рис. 3.13).

Следует отметить, что периодической последовательности в чистом виде не бывает поскольку любая последовательность имеет начало и конец. Степень приближения зависит от числа импульсов в последовательности. Поэтому для строгого описания импульсного носителя последний должен рассматриваться как одиночный импульс, представляющий собой пакет элементарных импульсов определенной формы. Такой сигнал имеет непрерывный спектр.

Однако по мере накопления числа импульсов в последовательности ее спектр дробится и деформируется таким образом, что все более приближается к решетчатому.

Рис. 3.13 Изменение характера спектра носителя при изменении

длительности импульса τ для импульсов прямоугольной формы.

3.7 Спектры сигналов с импульсной модуляцией

Спектры всех видов импульсных модуляций имеют сложное строение, а выводы зачастую получаются слишком громоздкими. По этой причине вопрос о спектральном составе сигналов импульсной модуляции рассмотрим, опуская в ряде случаев слишком сложные промежуточные преобразования. Такое рассмотрение позволяет показать подход к задаче, наметить путь решения и проанализировать окончательные выводы.

Найдем спектр при амплитудно–импульсной модуляции (АИМ). Для упрощения модулирующую функцию f(t) выберем, содержащую одну гармонику sint

Раскрывая это выражение и заменяя произведение синуса на косинус

. (3.36)

Из (3.36) видно, что в спектре сигнала содержится частота модулирующей функции и наивысшие гармонические составляющие kω 0 ±  с двумя боковыми спутниками. При этом наивысшие гармонические составляющие вписываются в огибающую спектра одиночного импульса носителя. На Рис. 3.14 показан спектр при амплитудно-импульсной модуляции.

Рис. 3.14 Спектр при амплитудно-импульсной модуляции.

Ширина спектра при АИМ не изменяется, так как величина амплитуд, которые нужно принимать во внимание при определении ширины, зависит только от соотношения τ /Т, а эта величина при АИМ постоянна. Если последовательность импульсов модулируется сложной функцией от  min до  max , то в спектре после модуляции появляются не спектральные линии, а полосы частот  min …  max и кω 1 ±( min … max)

Рассмотрим особенности спектра при фазо-импульсной модуляции (ФИМ), которая относится к разновидности время-импульсной модуляции (ВИМ).

При ФИМ – модуляции (Рис. 3.15) пунктирной линией показано изменение модулирующей функции во времени. Вертикальные пунктирные линии соответствуют положению переходных фронтов немодулированнойпоследовательности импульсов. Из рисунка видно, что положение импульсов (фаза) меняется относительно так называемых тактовых точек t k , соответствующих положению на оси времени передних фронтов немодулированной последовательности импульсов. Смещение одного из импульсов на время ∆t k показано на рисунке.

Рис. 3.15 Иллюстрация ФИМ – модуляции.

Рис. 3.16 Положение импульса без модуляции

и при наличии модуляции.

На рис. 3.16 пунктиром показан немодулированный импульс, расположенный симметрично относительно тактовой точки, соответствующей началу отсчета. При модуляции импульс сместится на величину
, где t 1 соответствует новому положению переднего фронта, а t 2 – новому положению заднего фронта. Будем считать, что максимальное смещение импульса ∆t K соответствует значению U(t) = 1.

Если модулирующая функция изменяется синусоидально, то для модулированного импульса моменты времени, соответствующие положению переднего и заднего фронтов будет:


(3.37)


(3.38)

В последнем выражении (3.38) значение времени равно (t-τ) поскольку задний фронт смещен относительно переднего на величину длительности импульса.

Для получения спектра при ФИМ необходимо подставить вместо τ значение t 2 -t 1 , поскольку t 1 и t 2 являются текущими координатами. Отразить смещение осевой линии можно, заменяя время t временем
. В результате подстановки этих значений в (3.35) получим:


(3.39)

Подставляя в выражение (3.39) значения t 1 и t 2 и после преобразования получим выражение, совпадающее со спектром при АИМ, только около составляющей основной частоты и каждой высшей гармоники появились не одна нижняя и одна верхняя боковые спектральные линии, а полосы боковых гармоник с частотами (kω 0 ±n).

Примерный вид спектра показан на рис. 3.17. Однако боковые спутники быстро убывают, так как в них входят Бесселевы функции.

Рис. 3.17 Спектр при фазо-импульсной модуляции.

Спектры при ШИМ и ЧИМ по своему составу оказываются такими же, как и спектр при ФИМ – модуляции.

Несмотря на то, что характер спектра при модуляции носителя изменяется и зависит от вида модуляции, его ширина остается такой же, как и для одиночного импульса и определяется в основном длительностью импульсов τ.

Передача измерительной информации в телеметрических устройствах с временным разделением каналов часто оказывается более предпочтительной, чем передача при помощи частотного разделения каналов, так как при временном разделении не требуется фильтров и, кроме того, ширина полосы пропускания не зависит от числа каналов.

В зависимости от вида модуляции в каналах (первичной) и вида модуляции несущей частоты (вторичной) существуют основные типы телеизмерительных устройств с временным разделением каналов: АИМ-ЧМ, ШИМ-ЧМ, ФИМ-АМ, ФИМ-ЧМ, КИМ-АМ, КИМ-ЧМ.

Системы с временным разделением каналов применяются для передачи измерительной информации с искусственных спутников и космических кораблей.

Название образовательной организации:

Государственное бюджетное профессиональное образовательное учреждение «Ставропольский колледж связи имени Героя Советского Союза В.А. Петрова»

Год и место создания работы: 2016 год, цикловая комиссия естественных и общепрофессиональных дисциплин.

Методические указания к выполнению практической работы по дисциплине «Теория электросвязи»

«Расчет и построение спектра периодической последовательности прямоугольных импульсов»

для студентов 2 курса специальностей:

11.02.11 Сети связи и системы коммутации

11.02.09 Многоканальные телекоммуникационные системы

очной формы обучения

Цель работы: закрепить знания, полученные на теоретических занятиях, выработать навыки расчета спектра периодической последовательности прямоугольных импульсов.

Литература: П.А. Ушаков «Цепи и сигналы электросвязи». М.: Издательский центр «Академия», 2010, с.24-27.

1. Оснащение:

1.Персональный компьютер

2.Описание практической работы

2. Теоретический материал

2.1. Периодический сигнал произвольной формы может быть представлен в виде суммы гармонических колебаний с разными частотами, это называется спектральным разложение сигналом.

2.2 . Гармониками называются колебания, частоты которых в целое число раз больше частоты следования импульсов сигнала.

2.3. Мгновенное значение напряжения периодического сигнала производной формы может быть записано следующим образом:

Где постоянная составляющая, равная среднему значению сигнала за период;

Мгновенное значение синусоидального напряжения первой гармоники;

Частота гармоники, равная частоте следования импульсов;

Амплитуда первой гармоники;

Начальная фаза колебания первой гармоники;

Мгновенное значение синусоидального напряжения второй гармоники;

Частота второй гармоники;

Амплитуда второй гармоники;

Начальная фаза колебания второй гармоники;

Мгновенное значение синусоидального напряжения третий гармоники;

Частота третий гармоники;

Амплитуда третий гармоники;

Начальная фаза колебания третий гармоники;

2.4. Спектр сигнала - это совокупность гармонических составляющих с конкретными значениями частот, амплитуд и начальных фаз, образующих в сумме сигнала. На практике чаще всего используется диаграмма амплитуд

Если сигнал представлен собой периодическую последовательность прямоугольных импульсов, то постоянная составляющая равна

где Um - амплитуда напряжения ПППИ

s - скважность сигнала (S - T/t);

T - период следования импульсов;

t - длительность импульсов;

Амплитуды всех гармоник определяются выражением:

Umk = 2Um | sin kπ/s | / kπ

где k - номер гармоника;

2.5. Номера гармоника, амплитуды которых равны нулю

где n - любое целое число 1,2,3…..

Номер гармоники, амплитуда которой первый раз обращается в нуль, равен скважности ПППИ

2.6. Интервал между любыми соседними спектральными линиями равен частоте первой гармоники или частоте следования импульсов.

2.7 Огибающая амплитудного спектра сигнала (на рис. 1 показанная пунктирной линией)

выделяет группы спектральных линий называемых лепестками. Согласно рис. 1 каждый лепесток огибающей спектра содержит число линий, равное скважности сигнала.

3 . П орядок выполнения работы .

3.1. Получить вариант индивидуального задания, который соответствует номеру в списке журнала группы (см. приложение).

3.2. Ознакомиться с примером расчета (см. раздел 4)

4. Пример

4.1. Пусть период следования ПППИ Т=.1мкс, длительность импульсов t=0,25 мкс, амплитуда импульса =10В.

4.2. Расчет и построение временной диаграммы ПППИ.

4.2.1 . Для построения временной диаграммы ПППИ необходимо знать период следования импульсов Т, амплитуду и длительность импульсов t, которые известны из условия задачи.

4.2.2. Для построения временной диаграммы ПППИ необходимо выбрать масштабы по осям напряжений и времени. Масштабы должны соответствовать числам 1,2 и 4, умноженным на 10 n -(где n=0,1,2,3...). Ось времени должна занимать примерно 3/4 ширины листа и на ней следует разместить 2-3 периода сигнала. Вертикальная ось напряжений должна быть равна 5-10 см. При ширине листа 20 см длинна оси времени должна равна примерно 15 см. На 15-ти см удобно разместить 3 периода, при этом на каждый период будет приходиться L 1 =5см. Так как

Mt=T/Lt=1мкс/5см= 0,2 мкс/см

Полученный результат не противоречит выше указанным условиям. На оси напряжений удобно взять масштаб Мu=2В/см (см.рис.2).

4.3.Расчет и построение спектральной диаграммы.

4.3.1.Скважность ПППИ равна

4.3.2. Так как скважность S=4, то следует рассчитывать 3лепестка, т.к. 12 гармоник.

4.3.3.Частоты гармонических составляющих равны

Где к- номер гармоники, l- период ПППИ.

4.3.4. Амплитуды составляющих ПППИ равны

4.3.5. Математическая модель ПППИ напряжения

4.3.6.Выбор масштабов.

Ось частот располагается горизонтально и при ширине листа 20см должна иметь длину около 15 см. Так как на оси частот нужно показать самую высокую частоту 12 МГц удобно взять масштаб по этой оси Mf=1MГц/см.

Ось напряжений располагается вертикально и должна иметь длину 4-5 см. Так как из оси напряжений нужно показать самое большое напряжение

Удобно взять масштаб по этой оси M=1В/см.

4.3.7.Спектральная диаграмма показана на рис.3

Задание:

    T=0.75мс; τ=0.15мс 21.T=24мкс; τ=8мкс

    T=1.5 мкс; τ=0.25мкс 22. T=6.4мс; τ=1.6мс

    T=2.45мс; τ=0.35мс 23. T=7мс; τ=1.4мс

    T=13.5мкс; τ=4.5мкс 24. T=5.4мс; τ=0.9мс

    T=0.26мс; τ=0.65мкс 25. T=17.5мкс; τ=2.5мкс

    Т=0.9мс; τ=150мкс 26. T=1.4мкс; τ=0.35мкс

    Т=0.165мс; τ=55мкс 27. T=5.4мкс; τ=1.8мкс

    Т=0.3мс; τ=75мкс 28. T=2.1мс; τ=0.3мс

    Т=42.5мкс; τ=8.5мкс 29. T=3.5мс; τ=7мс

    Т=0.665мс; τ=95мкс 30. T=27мкс; τ=4.5мкс

    Т=12.5мкс; τ=2.5мкс 31. T=4.2мкс; τ=0.7мкс

    Т=38мкс; τ=9.5мкс 32.T=28мкс; τ=7мкс

    Т=0.9мкс; τ=0.3мкс 33. T=0.3мс; τ=60мкс

    Т=38.5мкс; τ=5.5мкс

    Т=0.21мc; τ=35мс

    Т=2.25мс; τ=0.45мс

    Т=39мкс; τ=6.5мкс

    Т=5.95мс; τ=0.85мс

    Т=48мкс; τ=16мкс

    Лабораторная работа №1.

    Представление периодических импульсных

    Сигналов рядом Фурье.

    Цель работы – Изучение спектрального состава периодической последовательности импульсов прямоугольной формы при различных частотах следования и длительности импульсов.

    Введение

    Для, передачи хранения и обработки информации используются периодические импульсные сигналы, которые могут быть математически представлены рядами Фурье. Существует временное рис.1 и частотное представление электрических сигналов рис.2.

    Рис.1. Временная форма представления периодической

    последовательности прямоугольных импульсов.

    Представление сигнала во временной области позволяет определить его параметры, энергию, мощность и длительность. Для представления сигналов в частотной области в виде спектра используется преобразования Фурье. Знание частотных свойств позволяет решать задачи идентификации характеристик сигнала (определение его наиболее информативных параметров), фильтрации (выделение полезного сигнала на фоне помех), выбора частоты дискретизации непрерывного сигнала. Одним из важнейших параметров сигнала является ширина частотного спектра, т. к. именно этот параметр оказывается определяющим при согласовании сигнала с аппаратурой обработки и передачи информации.

    Основные формулы и определения.

    Периодическую функциюu(t) с периодом T можно представить рядом Фурье


    (1)

    Колебание с частотой называется первой гармоникой; (n =1) колебание с частотой - второй гармоникой (n =2), c частотой - n-й гармоникой.

    Выражение (1) с использованием тождества

    может быть переписано в виде

    , (2)

    Коэффициенты и определяется по формулам

    Величина выражает среднее значение функции за период, она, называется также постоянной составляющей и вычисляется по формуле

    Формулы (3) решают задачу анализа : по заданной периодической функции нужно найти коэффициенты Фурье и . Формулы (1) и (2) решают задачу гармонического синтеза : по заданным коэффициентам и нужно найти периодическую функцию .

    Анализ спектра последовательности прямоугольных импульсов

    Совокупность амплитуд и частот гармонических составляющих называютамплитудной-частотной характеристикой (АЧХ), а зависимость от частот гармоник фазо-частотной характеристикой (ФЧХ). Амплитудно-частотный спектр прямоугольных импульсов может быть представлен графически рис.2.

    Рис.2. АЧХ и ФЧХ периодической последовательности

    прямоугольных импульсов.

    Пусть , представляющая последовательность прямоугольных импульсов рис.1 с амплитудой , длительностью и периодом описывается уравнением

    Тогда амплитуды и фазы для гармонических составляющих определяются уравнением:

    (4)

    Величина называется скважностью и обозначается буквой . Тогда уравнения (4) принимают вид

    где n =1, 2, … . (5)

    Для вычисления мощности сигналов представленных рядом Фурье в теории информации используют формулы в которых значение сопротивление R = 1 Ом. В этом случае напряжения u и токи i равны, поскольку i = u/R.

    Мощность постоянной составляющей Р 0 будет

    а мощность переменной составляющей Р n для n-й гармоники

    (6)

    Формула для результирующей мощности примет вид

    ЗАДАНИЕ

    1. Выполните анализ периодической последовательности прямоугольных импульсов

    1.1 По номеру варианта N, полученного у преподавателя, определите из таблицы 1 значение скважности и круговой частоты .

    Таблица 1

    №, вар q , рад/с №, вар q , рад/с
    3,24 47,25 8,50 69,22
    6,52 97,50 6,72 78,59
    5,93 14,45 2,30 19,44
    7,44 15,12 3,59 37,96
    1,87 70,93 4,48 78,27
    5,46 91,65 2,99 42,48
    6,40 86,40 6,18 75,45
    1,27 48,98 1,81 57,64
    2,97 40,13 3,22 15,46
    1,09 85,95 3,66 55,25
    2,13 57,30 3,27 27,58
    7,99 66,90 4,64 3,68
    4,61 31,55 3,71 43,73
    1,95 25,24 4,33 70,44
    2,66 6,61 3,38 52,07
    1,10 18,37 6,92 26,17
    4,06 70,24 4,95 55,52
    2,40 35,10 6,51 82,64
    9,42 33,96 3,32 68,07
    6,13 43,25 7,75 32,49
    7,36 52,37 5,71 26,68
    2,33 24,84 2,42 96,02
    2,18 25,34 16,99 88,59
    5,80 12,99 62,23 50,21
    1,68 41,16 37,54 20,70

    1.2 а) Определите 11 первых значений коэффициентов u n (n=0, 1, 2, ... , 10), считая Е=1 В, используя электронные таблицы "Exel" (или калькулятор, или другой программный продукт) по формулам (5) и и внесите их в соответствующую строку u n таблицы 2.

    1.3 б) Вычислите мощности p n и запишите их в таблицу 2.

    Таблица 2

    w w 1 2w 1 10w 1
    u n u 0 u 1 u 2 u 10
    j n j 1 j 2 j 3 j 10
    p n p 0 p 1 p 2 p 10

    и графика амплитудно-частотной характеристики (АЧХ) рис.3, а).

    1.4 Постройте фазо-частотную характеристику (ФЧХ) периодической последовательности импульсов подобно рис.2) в которой изменение знака u n эквивалентно сдвигу фазы на p.

    1.5 Вычислите удельную (на сопротивлении 1 Ом) мощность спектра первых 10 гармоник по формуле

    .

    2. Задача синтеза.

    2.1. Используя уравнение (1), представьте сумму первых 10 гармоник подставив в виде уравнения

    по вычисленным в таблице значениям u n для , , , …. и постройте временную зависимость на периоде Т, например.

    из таблицы 3

    в виде графика 4 во временном диапазоне одного периода Т= , используя текущее время t = nD t - t/2, с шагом где n=0,1,2, … ,10 , показанного на рис. 3 .

    Рис. 3. Временной интервал для синтеза сигнала

    В электронной аппаратуре различного применения широко используются периодические последовательности прямоугольных импульсов. При этом соотношения длительности импульса τ и периода колебания T могут сильно отличаться. Например, колебания, которые вырабатывают тактовые генераторы , задающие «темп» работы компьютеров, характеризуются соизмеримыми значениями τ и T , а импульсы, применяемые в радиолокации, могут быть в сотни раз короче периода. Отношение T /τ называют скважностью импульса , а обратную величину (τ/T ) - коэффициентом заполнения .

    Рис. 6. Последовательность прямоугольных импульсов (а) и коэффициенты ряда Фурье (б)

    Рассмотрим последовательность прямоугольных импульсов, имеющих амплитуду А , длительность τ и следующих с периодом T (рис. 6, а ). Выберем начало отсчета времени так, как показано на рисунке, то есть, чтобы импульс был симметричен относительно нулевой отметки, и вычислим коэффициенты ряда Фурье (1). Поскольку функция s (t ) при таком положении осей оказывается четной, все b n равны нулю, а для a n получаем:

    Ряд Фурье для последовательности прямоугольных импульсов принимает вид:

    (6)

    Значения коэффициентов ряда Фурье, вычисленные по формулам (5), изображены на спектральной диаграмме, показанной на рис. 6, б .

    Коэффициенты a n можно связать с функцией
    . Действительно, они будут пропорциональны (с множителем
    ) значениям функции
    при аргументах, соответствующих частотам гармоник. Это видно, если выражение (5) переписать так:

    (7)

    Таким образом, функция типа
    является огибающей для коэффициентов Фурье-разложения последовательности прямоугольных импульсов (см. рис. 6, б ). Положение нулей огибающей на частотной оси f можно найти из условия
    или
    , где. Первый раз огибающая обращается в нуль при частотеf = 1/τ (или ω = 2π/τ). Далее нули огибающей повторяются при f = 2/τ, 3/τ, и т. д. Эти частоты могут совпасть (при целочисленных скважностях ) с частотами каких-либо гармоник спектра, и данные частотные составляющие из ряда Фурье исчезнут. Если скважность - целое число, периодT точно кратен длительности импульсов. Тогда между двумя нулями огибающей разместятся гармоники спектра в количестве q - 1.

    Каким образом связаны параметры импульсов во временном и частотном представлениях иллюстрирует табл. 2. С увеличением периода T гармоники на спектральной диаграмме сближаются (спектр становится «гуще»). Однако изменение только периода не приводит к изменению формы огибающей амплитудного спектра. Эволюция огибающей (сдвиг ее нулей) зависит от длительности импульсов. Здесь показана эволюция амплитудных спектральных диаграмм для последовательностей прямоугольных импульсов, у которых изменяются длительности импульсов и периоды. По осям ординат спектральных диаграмм отложены относительные значения амплитуд гармоник:
    Они рассчитаны по формулам:

    (8)

    Таблица 2. Осциллограммы и спектрограммы последовательностей прямоугольных импульсов

    2.5. Спектры хаотических (шумовых) колебаний

    Хаотическое колебание s (t ) - это случайный процесс . Каждая его реализация в неизменных условиях не повторяется, является уникальной. В электронике хаотические колебания связаны с шумами - колебаниями токов и напряжений, изменяющихся случайным образом вследствие беспорядочного движения носителей зарядов. В данном контексте хаотические и шумовые колебания считаются синонимами.

    Рис. 7. Структурная схема измерения среднего квадрата шумового напряжения

    Шумовое колебание можно описать в частотном представлении: ему сопоставляют некую спектральную характеристику, причем для случайного процесса она непрерывна. Теоретические основы спектрального разложения хаотических колебаний изложены в . Не погружаясь в строгую теорию, объясним методику экспериментального исследования статистических параметров шумового напряжения s (t ) по схеме, показанной на рис. 8.

    Р
    ис. 8.
    Схема измерения спектральной плотности интенсивности шумового напряжения

    Пропустим шумовое напряжение s (t ) через фильтр, выделяющий энергию колебаний в узкой полосе
    вблизи частоты f . При соблюдении условия
    << f колебание на выходе фильтра будет напоминать синусоиду с частотой f . Однако амплитуда и фаза этой синусоиды подвержены хаотическим изменениям. С уменьшением полосы пропускания фильтра
    форма выходного колебания все более приближается к синусоиде. Амплитуда ее уменьшается, но отношение среднего квадрата напряжения, прошедшего через фильтр (), к ширине полосы
    остается конечным и при последовательном уменьшении полосы стремится к определенному пределу W (f ):

    Предельную величину W (f ) называют спектральной плотностью интенсивности процесса s (t ). Она равна средней интенсивности гармонических составляющих, приходящихся на единичный интервал оси частот. При измерении W (f ) используют узкополосный перестраиваемый фильтр, который можно настроить на любую частоту в заданном диапазоне измерений. Шумовое напряжение, прошедшее сквозь фильтр, подвергают квадратичному детектированию и усредняют (интегрируют). В результате получают средний квадрат: . Далее по известной полосе фильтра
    вычисляют W (f ). Полную интенсивность процесса - средний квадрат - находят интегрированием спектральных составляющих шума по всем частотам:

    (10)

    Для подготовки к работе следует изучить в полном объеме данное пособие. Более подробные сведения по теме лабораторной работы можно найти в главе «Частотные спектры электрических колебаний, спектральный анализ» книги .

    В предыдущих разделах мы рассмотрели разложение периодических сигналов в ряд Фурье, а также изучили некоторые свойства представления периодических сигналов рядом Фурье. Мы говорили, что периодические сигналы можно представить как ряд комплексных экспонент, отстоящих друг от друга на частоту рад/c, где — период повторения сигнала. В результате мы можем трактовать представление сигнала в виде ряда комплексных гармоник как комплексный спектр сигнала. Комплексный спектр, в свою очередь, может быть разделен на амплитудный и фазовый спектры периодического сигнала.

    В данном разделе мы рассмотрим спектр периодической последовательности прямоугольных импульсов, как одного из важнейших сигналов, используемого в практических приложениях.

    Спектр периодической последовательности прямоугольных импульсов

    Пусть входной сигнал представляет собой периодическую последовательность прямоугольных импульсов амплитуды , длительности секунд следующих с периодом секунд, как это показано на рисунке 1

    Рисунок 1. Периодическая последовательность прямоугольных импульсов

    Единица измерения амплитуды сигнала зависит от физического процесса, который описывает сигнал . Это может быть напряжение, или, сила тока, или любая другая физическая величина со своей единицей измерения, которая меняется во времени как . При этом, единицы измерения амплитуд спектра , , будут совпадать с единицами измерения амплитуды исходного сигнала.

    Тогда спектр , , данного сигнала может быть представлен как:

    Спектр периодической последовательности прямоугольных импульсов представляет собой множество гармоник с огибающей вида .

    Свойства спектра периодической последовательности прямоугольных импульсов

    Рассмотрим некоторые свойства огибающей спектра периодической последовательности прямоугольных импульсов.

    Постоянная составляющая огибающей может быть получена как предел:

    Для раскрытия неопределенности воспользуемся правилом Лопиталя :

    Где называется скважностью импульсов и задает отношение периода повторения импульсов к длительности одиночного импульса.

    Таким образом, значение огибающей на нулевой частоте равно амплитуде импульса деленной на скважность. При увеличении скважности (т.е. при уменьшении длительности импульса при фиксированном периоде повторения) значение огибающей на нулевой частоте уменьшается.

    Используя скважность импульсов выражение (1) можно переписать в виде:

    Нули огибающей спектра последовательности прямоугольных импульсов можно получить из уравнения:

    Знаменатель обращается в ноль только при , однако, как мы выяснили выше , тогда решением уравнения будет

    Тогда огибающая обращается в ноль если

    На рисунке 2 показана огибающая спектра периодической последовательности прямоугольных импульсов (пунктирная линия) и частотные соотношения огибающей и дискретного спектра .

    Рисунок 2. Cпектр периодической последовательности прямоугольных импульсов

    Также показаны амплитудная огибающая , амплитудный спектр , а также фазовая огибающая и фазовый спектр .

    Из рисунка 2 можно заметить, что фазовый спектр принимает значения когда огибающая имеет отрицательные значения. Заметим, что и соответствуют одной и той же точке комплексной плоскости равной .

    Пример спектра периодической последовательности прямоугольных импульсов

    Пусть входной сигнал представляет собой периодическую последовательность прямоугольных импульсов амплитуды , следующих с периодом секунды и различной скважностью . На рисунке 3а показаны временные осциллограммы указанных сигналов, их амплитудные спектры (рисунок 3б), а также непрерывные огибающие спектров (пунктирная линия).

    Рисунок 3. Cпектр периодической последовательности прямоугольных импульсов при различном значении скважности
    а — временные осциллограммы; б — амплитудный спектр

    Как можно видеть из рисунка 3, при увеличении скважности сигнала, длительность импульсов уменьшается, огибающая спектра расширяется и уменьшается по амплитуде (пунктирная линия). В результате, в пределах главного лепестка увеличивается количество гармоник спектра .

    Спектр смещенной во времени периодической последовательности прямоугольных импульсов

    Выше мы подробно изучили спектр периодической последовательности прямоугольных импульсов для случая, когда исходный сигнал являлся симметричным относительно . В результате спектр такого сигнала является вещественным и задается выражением (1). Теперь мы рассмотрим, что произойдет со спектром сигнала если мы сместим сигнал во времени,как это показано на рисунке 4 .

    Рисунок 4. Сдвинутая во времени периодическая последовательность прямоугольных импульсов

    Смещенный сигнал можно представить как сигнал , задержанный на половину длительности импульса . Спектр смещенного сигнала можно представить согласно свойству циклического временного сдвига как:

    Таким образом, спектр периодической последовательности прямоугольных импульсов, смещенной относительно нуля, не является чисто вещественной функцией, а приобретает дополнительный фазовый множитель . Амплитудный и фазовый спектры показаны на рисунке 5.

    Рисунок 5. Амплитудный и фазовый спектры сдвинутой во времени периодической последовательности прямоугольных импульсов

    Из рисунка 5 следует, что сдвиг периодического сигнала во времени не изменяет амплитудный спектр сигнала, но добавляет линейную составляющую к фазовому спектру сигнала.

    Выводы

    В данном разделе мы получили аналитическое выражение для спектра периодической последовательности прямоугольных импульсов.

    Мы рассмотрели свойства огибающей спектра периодической последовательности прямоугольных импульсов и привели примеры спектров при различном значении скважности.

    Также был рассмотрен спектр при смещении во времени последовательности прямоугольных импульсов и показано, что смещение во времени изменяет фазовый спектр и не влияет на амплитудный спектр сигнала.

    Москва, Советское радио, 1977, 608 c.

    Дёч, Г. Руководство по практическому применению преобразования Лапласа. Москва, Наука, 1965, 288 c.

Просмотров