Ультрафиолетовое излучение. Характеристика. Н евидимое глазом электромагнитное излучение, занимающее область между нижней границей видимого спектра и. Ультрафиолетовое излучение презентация по физике

Описание презентации по отдельным слайдам:

1 слайд

Описание слайда:

ИНФРАКРАСНОЕ, УЛЬТРАФИОЛЕТОВОЕ и РЕНТГЕНОВСКОЕ ИЗЛУЧЕНИЯ. Их свойства и применение.

2 слайд

Описание слайда:

Инфракрасное излучение. - не видимое глазом электромагнитное излучение в пределах длин волн от 1-2 мм до 0,74 мкм (или частотный диапазон). Уильям Гершель (1738-1822) основоположник звездной астрономии

3 слайд

Описание слайда:

В работе «Опыты по преломляемости невидимых солнечных лучей» Уильям Гершель описывает свои эксперименты, в результате которых им было открыто в 1800 году инфракрасное излучение в спектре Солнца.… «...[Эксперименты] доказывают, что существуют лучи, приходящие от Солнца, которые преломляются слабее, чем любые из лучей, действующих на глаз. Они наделены сильной способностью к нагреву тел, но лишены способности освещать тела. Но на расстоянии 52 дюйма от призмы все еще имелась значительная способность к нагреву, проявляемая нашими невидимыми лучами на расстоянии 1,5 дюйма за красными лучами, измеренном по их проекции на горизонтальную плоскость. У меня нет сомнений, что их действенность может быть прослежена и несколько далее. Опыты... показывают, что способность к нагреванию тянется до крайних пределов видимых фиолетовых лучей, но не далее их. Последние эксперименты доказывают, что максимум нагревательной способности находится в невидимых лучах, и, вероятно, он находится на расстоянии не менее полудюйма за последними видимыми лучами. Эти эксперименты показывают также, что невидимые солнечные лучи демонстрируют способность к нагреванию, полностью равную способности к нагреванию красного света…» 1 дюйм = 1/12 фута = 10 линиям = 2,54 см.

4 слайд

Описание слайда:

Несмотря на всю тщательность описанного опыта и полученные очевидные результаты, вероятно, все же сама мысль о каких-то невидимых лучах, падающих на нас непрерывным потоком вместе с солнечным светом, была столь непривычна, что У. Гершель двадцать лет хранил молчание и опубликовал данные об открытии им в спектре Солнца инфракрасных лучей (более «красных», чем сами красные) лишь в 1800 и 1801 годах. Гершель сам шлифовал на станке стекла для телескопов, построенных им в саду дома, и навсегда остался в истории физики как первооткрыватель инфракрасных лучей.

5 слайд

Описание слайда:

Источник инфракрасного излучения. источником ИК-излучения являются колебание и вращение молекул вещества, поэтому инфракрасные эмв излучают нагретые тела, молекулы которых движутся особенно интенсивно. - примерно 50% энергии Солнца излучается в инфракрасном диапазоне; - человек создает ИК-излучение в диапазоне от 5 до 10 мкм(эту длину волны улавливают змеи, имеющие приемник теплового излучения и охотящиеся по ночам).

6 слайд

Описание слайда:

Применение ИК-излучения. Приборы ночного и теплового видения лишь немного Превосходят по своим размерам обычные подзорные трубы и бинокли, хотя при этом наделяют нас поистине сверхъестественными способностями - видеть невидимое!

7 слайд

Описание слайда:

Применение ИК-излучения. Цветные инфракрасные фотографии, сделанные с самолета, позволяют узнать что растет на вспаханном поле и хорошо ли полита водой плодородная земля.

8 слайд

Описание слайда:

Применение ИК-излучения. Тепловизор откликается не на отраженные, а на испускаемые телами и предметами инфракрасные лучи, улавливая разницу температур в доли градуса различных участков поверхности, например человеческого лица или работающего трансформатора.

9 слайд

Описание слайда:

Ультрафиолетовое излучение. - коротковолновое электромагнитное излучение (400-10 нм), на долю которого приходится около 9% всей энергии излучения Солнца. Ультрафиолетовое излучение Солнца ионизирует газы верхних слоев земной атмосферы, что приводит к образованию ионосферы, которое полностью поглощается в земной атмосфере и доступно для наблюдения лишь со спутников и ракет. Главный вклад в ультрафиолетовое излучение космическое дают горячие звезды. ВОЛЛАСТОН Уильям Хайд (1766-1828), английский ученый. Открыл (1801) независимо от И. Риттера ультрафиолетовое излучение.

10 слайд

Описание слайда:

Ультрафиолетовое излучение. - человеческий глаз не видит УФ-излучение, т.к. роговая оболочка глаза и глазная линза поглощают ультрафиолет. Однако люди, у которых удалена глазная линза при снятии катаракты, могут видеть УФ-излучение в диапазоне длин волн 300-350 нм; - УФ-излучение видят некоторые животные (голубь ориентируется по солнцу даже в пасмурную погоду); - вызывает загар кожи; - практически не пропускает УФ-лучи оконное стекло, т.к. его поглощает оксид железа, входящий в состав стекла. По этой причине даже в жаркий солнечный день нельзя загореть в комнате при закрытом окне;

11 слайд

Описание слайда:

Ультрафиолетовое излучение. - в малых дозах УФ-излучение оказывает благотворное влияние на организм человека, активизируя синтез витамина Д, недостаток которого в организме детей раннего возраста приводит к РАХИТУ, характеризующегося расстройством обмена веществ, нарушением костеобразования, функций нервной системы и внутренних органов; - большая доза УФ-облучения может вызвать ожоги кожи и раковые новообразования (в 80% случаев излечимые); чрезмерное УФ-облучение ослабляет иммунную систему организма, способствуя развитию некоторых заболеваний.

12 слайд

Описание слайда:

Применение ультрафиолетового излучения. Бактерицидное действие (медицина); Реставрация картин (обнаружение дефектов и царапин); Определение количества водорода в межзвездном пространстве и в составе далеких галактик и звезд (астрономия).

13 слайд

Описание слайда:

Рентгеновское излучение. - не видимое глазом электромагнитное излучение с длиной волны 10-5 - 102 нм. Проникают через некоторые непрозрачные для видимого света материалы. Испускаются при торможении быстрых электронов в веществе (непрерывный спектр) и при переходах электронов с внешних электронных оболочек атома на внутренние (линейчатый спектр). Источники - рентгеновская трубка, некоторые радиоактивные изотопы, ускорители и накопители электронов (синхротронное излучение). К галактическим источникам относятся преимущественно нейтронные звезды и, возможно, черные дыры, шаровые звездные скопления, к внегалактическим источникам - квазары, отдельные галактики и их скопления. Приемники - фотопленка, люминесцентные экраны, детекторы ядерных излучений.

14 слайд

Описание слайда:

крупнейший немецкий физик-экспериментатор. Открыл (1895) рентгеновские лучи, исследовал их свойства. Труды по пьезо- и пироэлектрическим свойствам кристаллов, магнетизму. Первый лауреат Нобелевской премии по физике. Рентген Вильгельм Конрад (1845-1923)

15 слайд

Описание слайда:

Устройство рентгеновской трубки. В настоящее время для получения рентгеновских лучей разработаны весьма совершенные устройства, называемые рентгеновскими трубками. На рисунке изображена упрощенная схема электронной рентгеновской трубки. Катод 1 представляет собой вольфрамовую спираль, испускающую электроны за счет термоэлектронной эмиссии. Цилиндр 3 фокусирует поток электронов, которые затем соударяются с металлическим электродом (анодом) 2. При этом появляются рентгеновские лучи. Напряжение между анодом и катодом достигает нескольких десятков киловольт. В трубке создается глубокий вакуум. В мощных рентгеновских трубках анод охлаждается проточной водой, так как при торможении электронов выявляется большое количество теплоты. В полезное излучение превращается лишь около 3% энергии электронов.

16 слайд

Описание слайда:

Рентгеновское излучение. Первый в мире рентгеновский снимок, запечатлевший кисть руки жены Рентгена с обручальным кольцом.

17 слайд

Описание слайда:

Применение рентгеновского излучения. Врачи хотели с помощью рентгеновских лучей узнать как можно больше о недугах своих пациентов. Вскоре они смогли судить не только о переломах костей, но и об особенностях строения желудка, о расположении язв и опухолей. Обычно желудок прозрачен для рентгеновских лучей, и немецкий ученый Ридер предложил кормить больных перед фотографированием... кашей из сернокислого бария. Сернокислый барий безвреден для организма и значительно менее прозрачен для рентгеновских лучей, чем мускулы или внутренние ткани. На снимках стали видны любые сужения или расширения пищеварительных органов человека. В кровь больных вводят вещества, активно поглощающие рентгеновские лучи. И врач видит на экране рентгеновского аппарата места закупорки и расширения сосудов.

Презентация по слайдам

Текст слайда:


Текст слайда: Ультрафиолетовые лучи,УФ излучение Ультрафиолетовое излучение – это невидимое глазом эл.-магнитное излучение, занимающее спектральную область между видимым и рентгеновским излучением в пределах длин волн от 400 до 10нм. Область УФ излучения условно делится не ближнюю (400-200 нм.) и далекую, или вакуумную (200-10 нм.);последнее название обусловлено тем,что УФ излучение этого диапазона сильно поглощается воздухом и его исследование возможно только в вакууме.


Текст слайда: Открытие Ультрафиолетового излучения Ближнее Ультрафиолетовое излучение открыто нем. ученым И.В. Риттером и англ. ученым У. Волластоном. В 1801г. Немецкий физик Иоганн Риттер(1776-1810), исследуя спектр,открыл, что за его фиолетовым краем имеется область,создаваемая невидимыми глазом лучами. Эти лучи воздействуют на некоторые химические соединения. Под действием этих невидимых лучей происходит разложение хлорида серебра, свечение кристаллов сульфида цинка и некоторых других кристаллов. Вакуумное УФ излучение до 130 нм. Открыто немецким физиком В. Шуманом (1885-1903), а до 25 нм. – английским физиком Т. Лайманом (1924). Промежуток между вакуумным Ультрафиолетовым излучением и рентгеновским изучен к 1927г.


Текст слайда: Спектр Ультрафиолетового излучения Спектр излучения может быть линейчатым(спектры изолированных атомов, ионов, легких молекул), непрерывным (спектры тормозного или рекомбинационного излучения) или состоять из полос (спектры тяжелых молекул).


Текст слайда: Взаимодействие излучения с веществом При взаимодействии излучения с веществом могут происходить ионизация его атомов и фотоэффект. Оптические свойства веществ в УФ области спектра значительно отличаются от их оптических свойств в невидимой области. Характерно уменьшение прозрачности в У.и. (увеличение коэффициента поглощения) большинства тел, прозрачных в видимой области. Например, обычное стекло непрозрачно при 320 нм. В более коротковолновой области прозрачно лишь увиолевое стекло, сапфир, фтористый магний, кварц,флюорит, фтористый литий(имеет наиболее далекую границу прозрачности – до 105 нм.) и некоторые другие материалы. Из газообразных веществ наибольшую прозрачность имеют инертные газы, граница прозрачности которых определяется величиной их ионизационного потенциала (самую коротковолновую границу прозрачности имеет Не – 50,4 нм.) Воздух непрозрачен практически при длине волны меньше 185 нм. из-за поглощения УФ излучения кислородом. Коэффициент отражения всех материалов (в том числе металлов) уменьшается с уменьшением длины волны. Например, коэффициент отражения свеженапыленного Al, одного из лучших материалов для отражающихся покрытий в видимом диапазоне, резко уменьшается при длине волны меньше 90 нм. И значительно уменьшается также вследствие окисления поверхности. Для защиты поверхности алюминия от окисления применяются покрытия из фтористого лития или фтористого магния. В области длин волн меньше 80 нм. Некоторые материалы имеют коэффициент отражения 10-30% (золото, платина, радий, вольфрам и др.), однако при длине волны меньше 40 нм. И их коэффициент отражения снижается до 1% и ниже.


Текст слайда: Источники Ультрафиолетового излучения Излучение накаленных до температур ~3000К твердых тел содержит заметную долю УФ непрерывного спектра, интенсивность которого растет с увеличением температуры. Более мощный источник Ультрафиолетового излучения – любая высокотемпературная плазма. Для различных применений УФ излучения используются ртутные, ксеноновые и др. газоразрядные лампы, одна из которых (либо целиком колбы) изготавливают из прозрачных для УФ излучения материалов (чаще из кварца). Интенсивное УФ излучение непрерывного спектра испускают электроны в ускорителе. Для УФ области существуют лазеры, наименьшую длину волны испускает лазер с умножением частоты (длина волны = 38 нм.). Естественные источники ультрафиолета – Солнце, звезды, туманность и др. космические объекты. Однако лишь длинноволновая часть их излучения (длина волны больше 290 нм) достигает земной поверхности. Более коротковолновое излучение поглощается атмосферой на высоте 30-200 км., что играет большую роль в атмосферных процессах. УФ излучение звёзд и других космических тел, кроме того, в интервале 91,2-20 нм практически полностью поглощается межзвёздным водоворотом.


Текст слайда: Приёмники Ультрафиолетового излучения Для регистрации УФ излучения при длине волны=230 нм используются обычные фотоматериалы, в более коротковолновой области к нему чувствительны специальные маложелатиновые фотослои. Применяются фотоэлектрические приёмники, использующие способность УФ излучения вызывать ионизацию и фотоэффект: фотоиды, ионизационные камеры, счетчики фотонов, фотоумножители и т.д. Разработан также особый вид фотоумножителей – каналовые электронные фотоумножители, позволяющие создавать микроканаловые пластины. В таких пластинах каждая ячейка является каналовым электронным умножителем размером до 10 мкм. Микроканаловые пластины позволяют получать фотоэлектрические изображения в УФ излучении и объединяют преимущества фотографических и фотоэлектрических методов регистрации излучения. При исследовании УФ излучения также используют различные люминисцирующие вещества, преобразующие УФ излучение в видимое. На их основе созданы приборы для визуализации изображения УФ излучении.


Текст слайда: Биологическое действие Ультрафиолетового излучения УФ излучение поглощается верхними слоями тканей растений, кожи человека или животных. При это происходят химические изменения молекул биополимеров. Малые дозы оказывают благотворное влияние на человека,активизируя синтез витамина D в организме, а также вызывая загар; улучшает иммунобиологические свойства. Большая доза УФ-облучения может вызвать повреждение глаз, ожог кожи и раковые новообразования (в 80% случаев излечимые). Кроме того, чрезмерное УФ-облучение ослабляет иммунную систему организма, способствуя развитию некоторых заболеваний. УФ излучение с длиной волны меньше 399 нм деполимеризует нуклеиновые кислоты и разрушает протеины, нарушая жизненные процессы в организме. Поэтому в малых дозах такое излучение обладает бактерицидным действием, уничтожая микроорганизмы.


Текст слайда: Применение УФ излучения Излучение спектров испускания, поглощения и отражения в УФ области позволяет определить электронную структуру атомов, молекул ионов, твердых тел. УФ спектры Солнца, звёзд, туманностей несут информацию о физических процессах,происходящих в горячих областях этих космических объектов. На фотоэффекте, вызываемом УФ излучением, основана Фотоэлектронная спектроскопия. УФ излучение может нарушать химические связи в молекулах, в результате чего могут возникать различные фотохимические реакции, что послужило основой для фотохимии. Люминесценция под действием УФ излучения используется для создания люминесцентных ламп, светящихся красок. В люминесцентном анализе, дефектоскопии. УФ излучение применяется в криминалистике и искусствоведении Способность различных веществ к избирательному поглощению УФ излучения используется для обнаружения вредных примесей в атмосфере и в УФ микроскопии.

Слайд №10


Текст слайда: Интересные факты об УФ излучении Основной слой атмосферы Земли сильно поглощает УФ излучение с длиной волны меньше 320 нм, а кислород воздуха – коротковолновое УФ излучение с длиной волны меньше 185 нм. Практически не пропускает УФ излучение оконное стекло, так как его поглощает оксид железа. Входящими в состав стекла. По этой причине даже в жаркий день нельзя загореть в комнате при закрытом окне. Человеческий глаз не видит УФ излучение, так как роговая оболочка глаза и глазная линза поглощают ультрафиолет. Однако люди, у которых удалена глазная линза при снятии катаракты, могут видеть УФ излучение в диапазоне длин волн 300-350 нм. Ультрафиолетовое излучение видят некоторые животные. Например, голубь ориентируется по Солнцу даже в пасмурную погоду.

Сафонова Анастасия

История открытия, основные свойства, применение ультрафиолетовых лучей. Влияние ультрафиолетовых лучей на здоровье человека.

Скачать:

Предварительный просмотр:

Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


Подписи к слайдам:

Ультрафиолетовое излучение Сафонова Анастасия

Ультрафиолетовое излучение Ультрафиоле́товое излуче́ние (ультрафиолетовые лучи, УФ-излучение) - электромагнитное излучение, занимающее спектральный диапазон между видимым и рентгеновским излучениями. Термин происходит от лат. ultra - сверх, за пределами и фиолетовый.

История открытия Понятие об ультрафиолетовых лучах впервые встречается у индийского философа 13-го века в его труде. Атмосфера описанной им местности содержала фиолетовые лучи, которые невозможно увидеть невооружённым глазом. После того, как было обнаружено инфракрасное излучение, немецкий физик Иоганн Вильгельм Риттер начал поиски излучения и в противоположном конце спектра, с длиной волны короче, чем у фиолетового цвета. В 1801 году он обнаружил, что хлорид серебра, разлагающийся под действием света, быстрее разлагается под действием невидимого излучения за пределами фиолетовой области спектра

История открытия Хлорид серебра белого цвета в течение нескольких минут темнеет на свету. Разные участки спектра по-разному влияют на скорость потемнения. Быстрее всего это происходит перед фиолетовой областью спектра. Тогда многие ученые пришли к соглашению, что свет состоит из трех отдельных компонентов: (инфракрасного) компонента, осветительного компонента (видимого света), и восстановительного (ультрафиолетового) компонента.

Подтипы Ближний ультрафиолетовый диапазон часто называют «чёрным светом», так как он не распознаётся человеческим глазом, но при отражении от некоторых материалов спектр переходит в область видимого излучения вследствие явления фотолюминесценции. Для дальнего и экстремального диапазона часто используется термин «вакуумный» (VUV), в виду того, что волны этого диапазона сильно поглощаются атмосферой Земли.

Свойства Химическая активность Невидимость Уничтожение микроорганизмов благотворное влияние на организм человека (в небольших дозах) и отрицательное воздействие на человека (в больших дозах).

Воздействие на здоровье человека

Действие на кожу Воздействие ультрафиолетового излучения на кожу, превышающее естественную защитную способность кожи к загару, приводит к ожогам. Ультрафиолетовое излучение может приводить к образованию мутаций.

Действие на глаза Ультрафиолетовое излучение средневолнового диапазона (280-315 нм) практически неощутимо для глаз человека и в основном поглощается эпителием роговицы, что при интенсивном облучении вызывает радиационное поражение - ожог роговицы. Мягкий ультрафиолет длинноволнового диапазона (315-400 нм) воспринимается сетчаткой как слабый фиолетовый или серовато-синий свет, но почти полностью задерживается хрусталиком

Защита глаз Для защиты глаз от вредного воздействия ультрафиолетового излучения используются специальные защитные очки, задерживающие до 100 % ультрафиолетового излучения и прозрачные в видимом спектре. Как правило, линзы таких очков изготавливаются из специальных пластмасс или поликарбоната. Многие виды контактных линз также обеспечивают 100 % защиту от УФ-лучей

Природные источники ультрафиолета Основной источник ультрафиолетового излучения на Земле - Солнце. Соотношение интенсивности излучения УФ-А и УФ-Б, достигающих поверхности Земли, зависит от следующих факторов: от концентрации атмосферного озона над земной поверхностью от высоты Солнца над горизонтом от высоты над уровнем моря от атмосферного рассеивания от состояния облачного покрова от степени отражения УФ-лучей от поверхности (воды, почвы)

Искусственные источники Эритемные лампы были разработаны в 60-х годах прошлого века для компенсации «УФ недостаточности» естественного излучения.

Применение Для защиты документов от подделки их часто снабжают ультрафиолетовыми метками, которые видны только в условиях ультрафиолетового освещения. Ультрафиолетовое излучение, даваемое лампами чёрного света, является достаточно мягким и оказывает наименее серьёзное негативное влияние на здоровье человека

Дезинфекция питьевой воды Обеззараживание ультрафиолетовым (УФ) излучением - безопасный, экономичный и эффективный способ дезинфекции. Принцип действия УФ-излучения. УФ-дезинфекция выполняется при облучении находящихся в воде микроорганизмов УФ-излучением определённой интенсивности в течение определённого периода времени. В результате такого облучения микроорганизмы погибают, так как они теряют способность воспроизводства.

Анализ минералов Многие минералы содержат вещества, которые при освещении ультрафиолетовым излучением начинают испускать видимый свет. Каждая примесь светится по-своему, что позволяет по характеру свечения определять состав данного минерала.

Ловля насекомых Ультрафиолетовое излучение нередко применяется при ловле насекомых на свет (Это связано с тем, что у большинства насекомых видимый диапазон смещён, по сравнению с человеческим зрением, в коротковолновую часть спектра: насекомые не видят того, что человек воспринимает как красный, но видят мягкий ультрафиолетовый свет.

Ультрафиолет в реставрации Ультрафиолетовые лучи позволяют определить старение лаковой пленки - более свежий лак в ультрафиолете выглядит темнее. В свете большой лабораторной ультрафиолетовой лампы более темными пятнами проступают отреставрированные участки и кустарно переписанные подписи.

Спасибо за внимание!

Слайд 1

Ультрафиолетовые лучи

Слайд 2

Ультрафиолетовые лучи – это электромагнитное излучение (не видимое глазом), занимающее спектральную область между видимым и рентгеновским излучениями в пределах длин волн (400-10).10-9м.

История открытия. Понятие об ультрафиолетовых лучах впервые встречается у индийского философа 13-го века Шри Маквачара. Атмосфера описанной им местности Бхутакаша содержала фиолетовые лучи, которые невозможно увидеть обычным глазом.

Слайд 3

Ближний ультрафиолетовый диапазон часто называют «чёрным светом», так как он не распознаётся человеческим глазом. На кредитных картах VISA при освещении УФ лучами появляется изображение парящего голубя.

Луна в ультрафиолетовом свете

Чёрный свет.

Слайд 4

Спектральные участки ультрафиолета.

Биологические эффекты ультрафиолетового излучения в трёх спектральных участках существенно различны, поэтому биологи иногда выделяют, как наиболее важные в их работе, следующие диапазоны: Ближний ультрафиолет, УФ-A лучи (УФ-A, 315-400 нм) Средний ультрафиолет, УФ-B лучи (УФ-В, 280-315 нм) Дальний ультрафиолет, УФ-C лучи (УФ-C, 100-280 нм) Практически весь УФ-C и приблизительно 90 % УФ-B поглощаются озоном, а также водным паром, кислородом и углекислым газом при прохождении солнечного света через земную атмосферу. Излучение из диапазона УФ-A достаточно слабо поглощается атмосферой. Поэтому радиация, достигающая поверхности Земли, в значительной степени содержит ближний ультрафиолет УФ-A, и, в небольшой доле - УФ-В.

Слайд 5

Применение

Медицина (бактерицидное, мутагенное, терапевтическое (лечебное) и профилактическое действие, а так же дезинфекция; лазерная биомедицина)

Дезинфекция с помощью УФ

Слайд 6

Косметология: в соляриях для получения ровного красивого загара, ведь дефицит ультрафиолетовых лучей ведет к авитаминозу, снижению иммунитета, слабой работе нервной системы, появлению психической неустойчивости.

Слайд 7

Пищевая промышленность. Обеззараживания воды, воздуха, помещений, тары и упаковки УФ излучением Сельское хозяйство и животноводство. Полиграфия. Технология формования полимерных изделий под действием ультрафиолетового излучения (производство печатей и штампов)

Дезинфекция воды

Слайд 8

Отрицательные эффекты

Действие ультрафиолетового облучения на кожу, превышающее естественную защитную способность кожи (загар) приводит к ожогам. Длительное действие ультрафиолета способствует развитию меланомы, различных видов рака кожи. Ультрафиолетовое излучение неощутимо для глаз человека, но при воздействии вызывает типично радиационное поражение (ожог сетчатки).Так, например, 1 августа 2008 года десятки россиян повредили сетчатку глаза во время солнечного затмения. Они жаловались на резкое снижение зрения и пятно перед глазами. По словам врачей сетчатку можно восстановить.

Естественным источником ультрафиолетового излучения (УФИ) является Солнце. Невидимые ультрафиолетовые (УФ) лучи появляются в источниках излучения с температурой выше 1500oС и достигают значительной интенсивности при температуре более 2000oС. Искусственными источниками УФИ являются газоразрядные источники света, электрические дуги (дуговые электропечи, сварочные работы), лазеры и др.

Биологическое действие ультрафиолетового излучения

Различают три участка спектра ультрафиолетового излучения, имеющего различное биологическое воздействие. Слабое биологическое воздействие имеет ультрафиолетовое излучение с длиной волны 0,39-0,315 мкм. Противорахитичным действием обладают УФ-лучи в диапазоне 0,315-0,28 мкм, а ультрафиолетовое излучение с длиной волны 0,28-0,2 мкм обладает способностью убивать микроорганизмы.

Для организма человека вредное влияние оказывает как недостаток ультрафиолетового излучения, так и его избыток. Воздействие на кожу больших доз УФ-излучения приводит к кожным заболеваниям (дерматитам). Повышенные дозы УФ-излучения воздействуют и на центральную нервную систему, отклонения от нормы проявляются в виде тошноты, головной боли, повышенной утомляемости, повышения температуры тела и др.

Ультрафиолетовое излучение с длиной волны менее 0,32 мкм отрицательно влияет на сетчатку глаз, вызывая болезненные воспалительные процессы. Уже на ранней стадии этого заболевания человек ощущает боль и чувство песка в глазах. Заболевание сопровождается слезотечением, возможно поражение роговицы глаза и развитие светобоязни («снежная» болезнь). При прекращении воздействия ультрафиолетового излучения на глаза симптомы светобоязни обычно проходят через 2-3 дня.

Недостаток УФ-лучей опасен для человека, так как эти лучи являются стимулятором основных биологических процессов организма. Наиболее выраженное проявление «ультрафиолетовой недостаточности» - авитаминоз, при котором нарушается фосфорно-кальциевый обмен и процесс костеобразования, а также происходит снижение работоспособности и защитных свойств организма от заболеваний. Подобные проявления характерны для осенне-зимнего периода при значительном отсутствии естественной ультрафиолетовой радиации («световое голодание»).

В осенне-зимний период рекомендуется умеренное, под наблюдением медицинского персонала, искусственное ультрафиолетовое облучение эритемными люминесцентными лампами в специально оборудованных помещениях - фотариях. Искусственное облучение ртутнокварцевыми лампами нежелательно, так как их более интенсивное излучение трудно нормировать.

При оборудовании помещений источниками искусственного УФ-излучения необходимо руководствоваться «Указаниями по профилактике светового голодания у людей», утверждёнными Министерством здравоохранения СССР (N547-65). Документом, регламентирующим допустимую интенсивность ультрафиолетового излучения на промышленных предприятиях, являются «Указания по проектированию и эксплуатации установок искусственного ультрафиолетового облучения на промышленных предприятиях».

Воздействие ультрафиолетового излучения на человека количественно оценивается эритемным действием, т.е. покраснением кожи, в дальнейшем приводящим к пигментации кожи (загару).

Оценка ультрафиолетового облучения производится по величине эритемной дозы. За единицу эритемной дозы принят 1 эр, равный 1Вт мощности УФ-излучения с длиной волны 0,297 мкм. Эритемная освещённость (облучённость) выражается в эр/м2. Для профилактики ультрафиолетового дефицита достаточно десятой части эритемной дозы, т.е. 60-90 мкэр·мин/см2.

Бактерицидное действие ультрафиолетового излучения, т.е. способность убивать микроорганизмы, зависит от длины волны. Так, например, УФ-лучи с длиной волны 0,344 мкм обладают бактерицидным эффектом в 1000 раз большим, чем ультрафиолетовые лучи с длиной волны 0,39 мкм. Максимальный бактерицидный эффект имеют лучи с длиной волны 0,254-0,257 мкм.

Оценка бактерицидного действия производится в единицах, называемых бактами (б). Для обеспечения бактерицидного эффекта ультрафиолетового облучения достаточно примерно 50 мкб · мин/см2.

Защита от ультрафиолетового излучения

Для защиты от избытка УФИ применяют противосолнечные экраны, которые могут быть химическими (химические вещества и покровные кремы, содержащие ингредиенты, поглощающие УФИ) и физическими (различные преграды, отражающие, поглощающие или рассеивающие лучи). Хорошим средством защиты является специальная одежда, изготовленная из тканей, наименее пропускающих УФИ (например, из поплина). Для защиты глаз в производственных условиях используют светофильтры (очки, шлемы) из тёмно-зелёного стекла. Полную защиту от УФИ всех длин волн обеспечивает флинтглаз (стекло, содержащее окись свинца) толщиной 2 мм.

При устройстве помещений необходимо учитывать, что отражающая способность различных отделочных материалов для УФИ другая, чем для видимого света. Хорошо отражают УФ-излучения полированный алюминий и медовая побелка, в то время как оксиды цинка и титана, краски на масляной основе - плохо.

Просмотров