Законы флуоресценции. Классификация видов люминесценции. Люминесцентные пигменты и красители

Люминесценция - это излучение света определенными материалами в относительно холодном состоянии. Она отличается от излучения раскаленных тел, например или угля, расплавленного железа и проволоки, нагреваемой электрическим током. Излучение люминесценции наблюдается:

  • в неоновых и люминесцентных лампах, телевизорах, радарах и экранах флюороскопов;
  • в органических веществах, таких как люминол или люциферин в светлячках;
  • в некоторых пигментах, используемых в наружной рекламе;
  • при молнии и северном сиянии.

Во всех этих явлениях световое излучение не является результатом нагревания материала выше комнатной температуры, поэтому его называют холодным светом. Практическая ценность люминесцентных материалов заключается в их способности трансформировать невидимые формы энергии в

Источники и процесс

Явление люминесценции происходит в результате поглощения материалом энергии, например, от источника ультрафиолетового или рентгеновского излучения, пучков электронов, химических реакций и т. д. Это приводит атомы вещества в возбужденное состояние. Так как оно неустойчиво, материал возвращается в свое исходное состояние, а поглощенная энергия выделяется в виде света и/или тепла. В процессе задействованы только внешние электроны. Эффективность люминесценции зависит от степени превращения энергии возбуждения в свет. Число материалов, обладающих достаточной для практического применения эффективностью, относительно небольшое.

Люминесценция и накаливание

Возбуждение люминесценции не связано с возбуждением атомов. Когда горячие материалы начинают светиться в результате накаливания, их атомы находятся в возбужденном состоянии. Хотя они вибрируют уже при комнатной температуре, этого достаточно, чтобы излучение происходило в дальней инфракрасной области спектра. С повышением температуры частота электромагнитного излучения смещается в видимую область. С другой стороны, при очень высоких температурах, которые создаются, например, в ударных трубах, столкновения атомов могут быть настолько сильными, что электроны отделяются от них и рекомбинируют, испуская свет. В этом случае люминесценция и накаливание становятся неразличимыми.

Люминесцентные пигменты и красители

Обычные пигменты и красители обладают цветом, так как они отражают ту часть спектра, которая комплементарна поглощенной. Небольшая часть энергии преобразуется в тепло, но заметного излучения не происходит. Если, однако, люминесцентный пигмент поглощает дневной свет на определенном участке спектра, он может излучать фотоны, отличающиеся от отраженных. Это происходит в результате процессов внутри молекулы красителя или пигмента, благодаря которым ультрафиолет может быть преобразован в видимый, например, синий свет. Такие методы люминесценции используются в наружной рекламе и в стиральных порошках. В последнем случае «осветлитель» остается в ткани не только для отражения белого, но и для преобразования ультрафиолетового излучения в синий цвет, компенсирующий желтизну и усиливающий белизну.

Ранние исследования

Хотя молнии, северное сияние и тусклое свечение светлячков и грибов всегда были известны человечеству, первые исследования люминесценции начались с синтетического материала, когда Винченцо Каскариоло, алхимик и сапожник из Болоньи (Италия), в 1603 г. нагрел смесь сульфата бария (в виде барита, тяжелого шпата) с углем. Порошок, полученный после охлаждения, ночью испускал голубоватое свечение, и Каскариоло заметил, что оно может быть восстановлено путем воздействия на порошок солнечного света. Вещество было названо «ляпис солярис», или солнечный камень, потому что алхимики надеялись, что оно способно превращать металлы в золото, символом которого является солнце. Послесвечение вызвало интерес многих ученых того периода, дававших материалу и другие названия, в том числе «фосфор», что означает «носитель света».

Сегодня название «фосфор» используется только для химического элемента, в то время как микрокристаллические люминесцирующие материалы называются люминофором. «Фосфор» Каскариоло, по-видимому, был сульфидом бария. Первым коммерчески доступным люминофором (1870 г.) стала «краска Бальмена» - раствор сульфида кальция. В 1866 году был описан первый стабильный люминофор из сульфида цинка - один из важнейших в современной технике.

Одно из первых научных исследований люминесценции, проявляющейся при гниении древесины или плоти и в светлячках, было выполнено в 1672 году английским ученым Робертом Бойлем, который, хотя и не знал о биохимическом происхождении этого света, тем не менее установил некоторые из основных свойств биолюминесцентных систем:

  • свечение холодное;
  • оно может быть подавлено такими химическими агентами, как спирт, соляная кислота и аммиак;
  • излучение требует доступа к воздуху.

В 1885-1887 годах было замечено, что неочищенные экстракты, полученные из вест-индийских светлячков (огненосных щелкунов) и из моллюсков фолад, при смешивании производят свет.

Первыми эффективными хемилюминесцентными материалами были небиологические синтетические соединения, такие как люминола, открытая в 1928 году.

Хеми- и биолюминесценция

Большая часть энергии, выделяющейся в химических реакциях, особенно реакциях окисления, имеет форму тепла. В некоторых реакциях, однако, ее часть используется для возбуждения электронов до более высоких уровней, а во флуоресцентных молекулах до возникновения хемилюминесценции (ХЛ). Исследования показывают, что ХЛ является универсальным явлением, хотя интенсивность люминесценции бывает настолько мала, что требуется использование чувствительных детекторов. Есть, однако, некоторые соединения, которые демонстрируют яркую ХЛ. Наиболее известным из них является люминол, который при окислении пероксидом водорода может давать сильный синий или сине-зеленый свет. Другие сильные ХЛ-вещества - люцигенин и лофин. Несмотря на яркость их ХЛ, не все они эффективны при преобразовании химической энергии в световую, т. к. менее 1 % молекул излучают свет. В 1960-е годы было обнаружено, что сложные эфиры щавелевой кислоты, окисленные в безводных растворителях в присутствии сильно флуоресцирующих ароматических соединений, излучают яркий свет с эффективностью до 23 %.

Биолюминесценция представляет собой особый тип ХЛ, катализируемой ферментами. Выход люминесценции таких реакций может достигать 100 %, что означает, что каждая молекула реагирующего люциферина переходит в излучающее состояние. Все известные сегодня биолюминесцентные реакции катализируются реакциями окисления, протекающими в присутствии воздуха.

Термостимулированная люминесценция

Термолюминесценция означает не температурное излучение, но усиление светового излучения материалов, электроны которых возбуждены под действием тепла. Термостимулированная люминесценция наблюдается у некоторых минералов и прежде всего у кристаллофосфоров после того, как они были возбуждены светом.

Фотолюминесценция

Фотолюминесценция, которая возникает под действием электромагнитного излучения, падающего на вещество, может производиться в диапазоне от видимого света через ультрафиолетовый до рентгеновского и гамма-излучения. В люминесценции, вызванной фотонами, длина волны излучаемого света, как правило, равна или больше длины волны возбуждающего (т. е. равной или меньшей энергии). Эта разница в длине волны обусловлена ​​преобразованием поступающей энергии в колебания атомов или ионов. Иногда, при интенсивном воздействии лучом лазера, испускаемый свет может иметь более короткую длину волны.

Тот факт, что ФЛ может возбуждаться под действием ультрафиолетового излучения, был обнаружен немецким физиком Иоганном Риттером в 1801 г. Он заметил, что люминофоры ярко светятся в невидимой области за фиолетовой частью спектра, и таким образом открыл УФ-излучение. Превращение УФ в видимый свет имеет большое практическое значение.

При высоком давлении частота увеличивается. Спектры больше не состоят из одной спектральной линии 254 нм, а энергия излучения распределена по спектральным линиям, соответствующим различным электронным уровням: 303, 313, 334, 366, 405, 436, 546 и 578 нм. Ртутные лампы высокого давления используют для освещения, так как 405-546 нм соответствуют видимому голубовато-зеленому свету, а при трансформации части излучения в красный свет с помощью люминофора в итоге получается белый.

Когда молекулы газа возбуждаются, их спектры люминесценции показывают широкие полосы; не только электроны поднимаются на уровни более высокой энергии, но одновременно возбуждаются колебательные и вращательные движения атомов в целом. Это происходит потому, что колебательные и вращательные энергии молекул составляют 10 -2 и 10 -4 от энергий переходов, которые, складываясь, образуют множество немного отличающихся длин волн, составляющих одну полосу. В более крупных молекулах есть несколько перекрывающих друг друга полос, по одной для каждого вида перехода. Излучение молекул в растворе преимущественно лентовидное, что вызвано взаимодействием относительно большого числа возбужденных молекул с молекулами растворителя. В молекулах, как и в атомах, в люминесценции участвуют внешние электроны молекулярных орбиталей.

Флуоресценция и фосфоресценция

Эти термины можно различать не только на основании длительности свечения, но и по способу его производства. Когда электрон возбуждается до синглетного состояния со сроком пребывания в нем 10 -8 с, из которого он может легко вернуться в основное, вещество излучает свою энергию в виде флуоресценции. Во время перехода спин не изменяется. Базовое и возбужденное состояния имеют подобную кратность.

Электрон, однако, можно поднять на более высокий энергетический уровень (называемый "возбужденное триплетное состояние") с обращением его спина. В квантовой механике переходы из триплетных состояний в синглетные запрещены, и, следовательно, время их жизни значительно больше. Поэтому люминесценция в этом случае имеет гораздо более длительный срок: наблюдается фосфоресценция.

Свечение вещества (т. е. испускание видимого света), обусловленное переходами атомов и молекул вещества с высших энергетических уровней на низшие, называется люминесценцией, или холодным

свечением. Люминесценции должно предшествовать возбуждение атомов и молекул вещества. После устранения возбудителя люминесценция продолжается в течение некоторого промежутка времени, зависящего от природы люминесцирующего вещества и изменяющегося в широких пределах: от миллиардных долей секунды до многих часов и даже суток. По продолжительности «послесвечения» люминесценция подразделяется на флуоресценцию (кратковременное «послесвечение») и фосфоресценцию (длительное «послесвечение»). Впрочем, это подразделение весьма условно.

Свечение, обусловленное тепловым движением атомов и молекул (т. е. тепловое излучение), не относится к люминесценции. К ней не относятся также отражение и рассеяние света и некоторые другие виды свечения тела, прекращающиеся одновременно с устранением причины, вызвавшей их.

Чтобы отличить люминесценцию от этих видов свечения, ей можно дать следующее определение: люминесценция есть свечение вещества, являющееся избытком над тепловым излучением этого вещества при данной температуре и имеющее конечную длительность (т. е. не прекращающееся одновременно с устранением вызвавшей его причины).

Вещества, обладающие ярко выраженной способностью люминесцировать, называются люминофорами.

В зависимости от способа возбуждения люминесценции различают несколько ее видов.

1. Фотолюминесценция возбуждается видимым и ультрафиолетовым излучением. Примером фотолюминесценции может служить свечение часового циферблата и стрелок, окрашенных соответствующим люминофором.

2. Рентгенолюминесценция возбуждается рентгеновскими лучами; ее можно наблюдать, например, на экране рентгеновского аппарата.

3. Радиолюминесценция возбуждается радиоактивным излучением (см. § 139); наблюдается, например, на экране сцинтилляционных счетчиков (см. § 140).

4. Катодолюминесценция возбуждается электронным лучом; наблюдается на экранах осциллографа, телевизора, радиолокатора и других электроннолучевых приборов. В качестве люминофора, покрывающего экран, используются главным образом сульфиды и селениды цинка и кадмия.

5. Электролюминесценция возбуждается электрическим полем; имеет место, например, в газоразрядных трубках.

6. Хемилюминесценция возбуждается химическими процессами в веществе. Таковы, например, свечение белого фосфора, гниющей древесины, а также свечения некоторых споровых растений, насекомых, морских животных и бактерий.

Таким образом, люминесценция является своеобразным генератором (квантовым генератором), непосредственно преобразующим энергию электромагнитных волн различной длины, а также механическую, электрическую и химическую энергию в энергию видимого света.

Степень преобразования поглощаемой энергии в энергию люминесценции характеризуется энергетическим выходом люминесценции:

Спектр люминесценции зависит от природы люминесцирующего вещества и вида люминесценции.

Из всех перечисленных видов люминесценции рассмотрим подробнее только фотолюминесценцию, имеющую большое практическое применение.

Экспериментальное изучение спектров фотолюминесценции показало, что они, как правило, отличаются от спектров возбуждающего излучения.

Спектр люминесценции и его максимум сдвинуты в сторону более длинных волн относительно спектра, использованного для возбуждения.

Эту закономерность, называемую правилом Стокса, легко объяснить на основе квантовой теории. Энергия поглощаемого кванта частично переходит в другие виды энергии, например в теплоту. Поэтому энергия кванта люминесценции должна быть меньше Следовательно, где длины волн, соответствующие излученному и поглощенному квантам.

Иногда может иметь место так называемая антистоксовская люминесценция, при которой Это бывает в случае, когда квант поглощался уже возбужденной молекулой. Тогда в квант люминесценции входит не только часть энергии поглощенного кванта, но и энергия возбуждения молекулы. Понятно, что в этом случае

Существенной особенностью жидких и твердых люминофоров является независимость их спектра люминесценции от длины волны возбуждающего света. Благодаря этому по спектру фотолюминесценции можно судить о природе вещества жидких и твердых люминофоров.

Энергетический выход люминесценции может при некоторых условиях быть очень большим, достигающим 0,8; у жидких и твердых тел он зависит от длины волны возбуждающего света. Согласно закону Вавилова,

энергетический выход люминесценции сначала растет пропорционально длине волны возбуждающего света а затем (достигнув максимума) резко падает до нуля.

На рис. 365 приведен график зависимости от полученный Вавиловым для раствора флуоресцеина.

Как и правило Стокса, закон Вавилова объясняется квантовыми свойствами света. Действительно, представим себе наиболее благоприятный случай, когда каждый квант возбуждающего света приводит к образованию кванта люминесценции Тогда

энергетический выход люминесценции, очевидно, равен отношению этих квантов:

Но X не зависит от (у жидких и твердых люминофоров). Следовательно, в последней формуле при изменении будет изменяться только т. е. энергетический выход будет пропорционален Срыв кривой энергетического выхода происходит при больших длинах волн которым соответствуют слишком малые кванты уже не способные возбуждать люминесценцию.

Люминесценция находит широкое применение в осветительной технике: на ней, например, основана люминесцентная лампа. Люминесцентная лампа состоит из стеклянной трубки, у которой внутренняя поверхность стенок покрыта тонким слоем люминофора (рис. 366). В торцы трубки впаяны электроды. Трубка наполнена парами ртути и аргоном; парциальное давление паров ртути составляет около 1 Па, парциальное давление аргона - 400 Па.

Люминесцентная лампа включается в электросеть последовательно с дросселем и стартером (служащим для предварительного разогрева электродов).

Возникающий в лампе газовый разряд вызывает электролюминесценцию паров ртути. В спектре этой люминесценции наряду с видимым светом имеется ультрафиолетовое излучение (длиной волны оно возбуждает фотолюминесценцию люминофора, нанесенного на стенки лампы. Таким образом, в люминесцентной лампе совершается двойное преобразование энергии: электрическая энергия превращается в энергию ультрафиолетового излучения паров ртути, которая в свою очередь превращается в энергию видимого излучения люминофора.

Изменяя состав люминофора, можно изготовлять лампы требуемым спектром фотолюминесценции. Таким путем изготовляются люминесцентные лампы белого света, тепло-белого света, холодно-белого сгета и дневного света.

Спектральный состав излучения ламп дневного света близок к рассеянному евету северной части небосвода; лампа холодно-белого света имеет спектр, подобный спектру прямой солнечной радиации.

В связи с этим люминесцентные лампы успешно применяются для «досвечивания» сельскохозяйственных культур, выращиваемых на защищенном грунте.

Распределение энергии в спектре излучения лампы дневного света показано на рис. 367.

Люминесцентные лампы экономичны (их световой коэффициент полезного действия в 10-20 раз больше, чем у ламп накаливания) и весьма долговечны (срок службы доходит до 10 000 часов).

Другим важным применением люминесценции является люминесцентный анализ - метод определения состава вещества по спектру его фотолюминесценции, возбуждаемой ультрафиолетовыми лучами. Будучи очень чувствительным, люминесцентный анализ позволяет обнаружить малейшие изменения в химическом составе вещества и тем самым выявлять различие между объектами, кажущимися совершенно одинаковыми. Этим методом можно, например, выявлять самые начальные стадии загнивания пищевых продуктов (люминесцентный контроль свежести продуктов), обнаруживать следы нефти в пробах почвы, извлеченных из буровых скважин (люминесцентная разведка нефти), и т. п.

С помощью фотолюминесценции можно обнаружить тончайшие трещины на поверхности деталей машин и других изделий (люминесцентная дефектоскопия). Для этого поверхность исследуемого изделия смазывают жидким люминофором. Через 15-20 мин поверхность обмывают и вытирают. Однако в трещинах поверхности люминофор остается. Свечение этого люминофора (при ультрафиолетовом облучении изделия) отчетливо обрисует конфигурацию трещин.

Укажем, наконец, на использование фотолюминесценции для маскировочного освещения и декоративных целей (применение флуоресцирующих и фосфоресцирующих красок).

При фотолюминесценции атомы люминесцирующего вещества излучают совершенно несогласованно (беспорядочно): их излучения разновременны, имеют различные частоты и разности фаз, распространяются по всевозможным направлениям. Поэтому яркость фотолюминесценции оказывается незначительной. Однако в последние годы удалось найти способ искусственно вызывать когерентное одинаково направленное излучение множества атомов, создающее узкий пучок монохроматического света, превосходящего по яркости обычную люминесценцию в миллионы раз. Прибор, в котором осуществляется такое излучение, назван оптическим квантовым генератором, или лазером.

Название «лазер» образовано из первых букв английских слов: Light Amplification by Stimylated Emission of Radiation (усиление света посредством вынужденного излучения). В зависимости от применяемого рабочего вещества различают кристаллические, газовые и жидкостные лазеры.

Чтобы лазер начал действовать, необходимо перевести большое число атомов его рабочего вещества в одинаковые возбужденные состояния, так называемые метастабильные состояния, в которых атом пребывает сравнительно долгое

время (значительно превышающее Для этого рабочему веществу передается достаточная электромагнитная энергия от специального источника (метод «накачки»). Теперь в рабочем веществе лазера (имеющем форму тонкого длинного цилиндра, одним основанием которого является зеркало, другим - частично прозрачное зеркало) начнутся почти одновременные вынужденные переходы всех возбужденных атомов в нормальное состояние. Эти переходы сопровождаются почти одновременным испусканием множества световых квантов (фотонов) , имеющих одинаковую частоту и фазу и движущихся по одному направлению - вдоль оси лазера. Поток этих фотонов и образует узкий, мощный пучок монохроматического света, выходящий из лазера.

Лазер дает световой пучок очень малой расходимости. Будучи, например, направлен на Луну, такой пучок создает на ее поверхности световое пятно диаметром всего лишь в (луч обычного прожектора создал бы на таком же расстоянии световое пятно диаметром в Плотность энергии в луче лазера исключительно велика - тысячи и десятки тысяч ; причем расчеты показывают, что это еще далеко не предельные значения возможных плотностей. С помощью линзы можно сфокусировать свет лазера так, что он мгновенно расплавит и испарит освещенный участок любого материала.

Все это делает лазер исключительно перспективным прибором, уже сейчас широко используемым во многих областях науки и техники. Сварка микрообъектов, сверление и резка сверхтвердых материалов, ускорение хода химических реакций, передача световых сигналов на сверхдальние расстояния (космическая связь), глазная хирургия (разрушение опухолей на сетчатке) - таков далеко не полный перечень применений лазера.

Отметим, что наряду с оптическими квантовыми генераторами созданы квантовые генераторы в диапазоне коротких радиоволн - мазеры


Главными параметрами люминесценции (флуоресценции) являются: спектр люминесценции, квантовый выход, время жизни молекулы в возбужденном состоянии, спектр возбуждения. Рассмотрим эти параметры.

Спектр флуоресценции - зависимость излучения от длинны волны.

Квантовый выход (j) - это отношение количества квантов, испускаемых с уровня S 1 к количеству поглощенных квантов:

j = n фл / n погл

Если бы все переходы вниз сопровождались излучением, то квантовый выход j =1. Но за счет потерь рекомбинации (процессов, конкурирующих с флуоресценцией: тепловые потери и т. д.) он меньше единицы.

Определить квантовый выход можно по методу Паркера-Рисса . В одинаковых условиях снимается спектр неизвестного вещества и эталона с известным квантовым выходом (j 0):

j = j 0 ´S´D 0 / D´S 0 ,

где D 0 , D- оптические плотности эталона и исследуемого вещества;

S 0 , S - площади под кривыми флуоресценции, соответственно.

В качестве эталона используют флуоресцин в растворе NaCl (0.1М).

Время жизни молекул в возбужденном состоянии (t) определяется суммарной вероятностью его дезактивации:

t =1/ (k фл + k вн.к + k ин.к),

где k фл - константа скорости флуоресценции;

k вн.к - константа скорости внутренней конверсии;

k ин.к - константа скорости интеркомбинационной конверсиии.

Спектром возбуждения флуоресценции называется зависимость интенсивности флуоресценции от длинны волны возбуждающего света:

I фл / I 0 = f(l в),

где I фл - интенсивность флуоресценции;

I 0 - интенсивность падающего (возбуждающего) света;

l в - длина волны возбуждающего света.

Измерение спектров возбуждения флуоресценции имеет важное значение для решения целого ряда задач. Так, спектр возбуждения дает возможность установить спектр поглощения компонента, который флуоресцирует в исследуемой спектральной области, что позволяет идентифицировать этот компонент. Сравнительное изучение спектров возбуждения и флуоресценции позволяет обнаружить миграцию энергии возбуждения между различными компонентами в сложных системах. Так, если в двухкомпонентных системах флуоресцирует только один компонент, а в спектре возбуждения этой флуоресценции зарегистрированы полосы, соответствующие поглощению обоих компонентов, это означает, что в данной системе происходит миграция энергии с одного компонента на другой.

Явление флуоресценции описывается рядом законов.

Закон Вавилона : так как испускание флуоресценции происходит всегда с нижнего возбужденного энергетического уровня (S 1), то квантовый выход не зависит от длины волны возбуждающего света.

Правило Каша : так как испускание флуоресценции происходит всегда с нижнего возбужденного энергетического уровня (S 1), то форма спектра флуоресценции не зависит от длины волны возбуждающего света.

Кроме того, спектр флуоресценции сдвинут в длинноволновую сторону по сравнению с полосами поглощения, так как энергия поглощенного кванта частично растрачивается на тепловые колебания. Это приводит к тому, что энергия флуоресценции меньше, чем энергия поглощения кванта света.

Закон Стокса : спектр флуоресценции будет расположен в более длинноволновой области, чем самый длинноволновый максимум в спектре поглощения.

Фотопроцессы в биологических системах сопровождаются возникновением электронно-возбужденных состояний, характеризующихся определенной энергией, временем жизни, структурными свойствами.

Полная энергия состояния молекулы Е складывается из энергии электронного возбуждения Ее, колебательной энергии Еv и вращательной энергии Er. Таким образом, при поглощении кванта света молекулой полное изменение энергии можно представить в следующем виде: ашню = дельта Ее + дельта Еv + дельта Er . Энергия вращательных квантов меньше, чем колебательных, а их энергия, в свою очередь, меньше энергии электронных (Er 10 в10 Гц, Еv 10 в 13 Гц, Ее 10 в 18 Гц).

Возможные электронные переходы и энергетические состояния молекулы обычно представляются в виде схемы уровней энергии (Яблонского), где каждый электронный уровень расщепляется на ряд колебательных подуровней, а каждый колебательный - на ряд вращательных подуровней (рис. 1)

При поглощении кванта света молекулой осуществляется переход с самого нижнего колебательного подуровня основного состояния (комнатная температура) на возбужденные уровни S1* и S2*, характеризующиеся колебательными и вращательными подуровнями. В молекулах большинства соединений при возбуждении электронных состояний, расположенных выше S1*, происходит быстрая внутренняя конверсия (с временами порядка 10 в -13 с) за счет перехода с нижнего колебательного подуровня верхнего состояния S2* на верхний колебательный подуровень нижнего состояния S1* с последующей релаксацией (порядок 10 в -12) на самый нижний колебательный подуровень возбужденного состояния S1*. Это означает, что в какое бы возбужденное состояние ни попала молекула (например, в состояние S2*), в течение 10 в -13 - 10 в -12 с она перейдет на нижний колебательный подуровень первого электронного состояния S1*. Именно с этого уровня при переходе на любой колебательно-вращательный подуровень основного состояния S0 и происходит излучение - флуоресценция.

Отсюда следует, что спектр флуоресценции I=f(лямбда), т.е. зависимость интенсивности флуоресценции от длины волны и квантовый выход флуоресценции фи=число квантов фл/число погл квантов не зависят от длины волны возбуждающего света. Независимость спектра и квантового выхода флуоресценции от энергии поглощенного молекулой кванта называется законом Вавилова.

Поскольку энергия поглощенного кванта частично растрачивается на тепловые колебания, энергия кванта флуоресценции оказывается меньшей, т. е. спектр флуоресценции сдвинут в длинноволновую сторону относительно наиболее длинноволновой полосы поглощения (закон Стокса) (т.к. E=hc/лямбда, чем меньше энергия, тем длиннее лямбда). Если что рисуем 2 гладких холма, где правый – спектр флуоресценции, а левый – поглощения. Форма полос флуоресценции определяется распределением колебательных подуровней основного состояния, т. е. отражает колебательную структуру основного состояния S0.

Часто распределение колебательных подуровней по энергиям у основного и возбужденного состояний одинаково; следовательно, полосы флуоресценции и поглощения будут зеркально симметричны относительно так называемого (0 - 0)-перехода (единственный переход, имеющий одинаковую энергию поглощения и флуоресценции).

Принцип Франка – Кондона: электронные переходы в молекулах происходят очень быстро (около 10 в -15 с) по сравнению с движением ядер, благодаря чему расстояние между ядрами и их скорости при электронном переходе не успевают измениться. Существует несколько дополнительных формулировок этого принципа: электроны не обмениваются энергией с ядрами; электроны всегда имеют равновесную конфигурацию при любом расположении ядер. Зависимость потенциальной энергии системы от координат ядер многоатомной молекулы в основном и возбужденном состояниях различается. В наиболее простом случае (двухатомная молекула) минимумы кривых потенциальных энергий в основном и возбужденном состояниях сдвинуты, поскольку орбиталь, заполняемая электроном в возбужденном состоянии, занимает большую область пространства, чем в основном состоянии, и положение равновесия в возбужденном состоянии, следовательно, соответствует большему межъядерному расстоянию (поэтому сдвиг). Кроме того, форма таких потенциальных кривых в основном и возбужденном состояниях также различается (рис. 2).

В соответствии с принципом Франка - Кондона наиболее вероятным будет такой переход, при котором не произойдет изменений ни в положении ядер, ни в импульсе (принцип вертикальности перехода между двумя электронными состояниями). Решение волнового уравнения показывает, что хотя при поглощении кванта света возможны различные переходы, однако наиболее вероятным будет переход, обозначенный сплошной стрелкой вверх на рис. 2. Иными словами, наиболее вероятное межъядерное расстояние для молекулы с нулевой колебательной энергией соответствует середине АВ. В случае флуоресценции наиболее вероятным будет испускание из середины CD (сплошная стрелка вниз), что соответствует наиболее интенсивной полосе спектра. Флуоресценция происходит с самого нижнего колебательного уровня первого возбужденного состояния при переходе молекулы в основное состояние. Вероятность перехода из возбужденного в основное состояние может быть описана константой скорости перехода k, которая по физическому смыслу эквивалентна константе мономолекулярной реакции. Кинетика перехода может быть описана реакцией первого порядка dS*/dt=-kS*, где S* - количество возбужденных молекул. После интегрирования волшебным образом I=Io*exp(-kt), k – константа флуоресценции.

При отсутствии безызлучательных процессов (фи= 1) длительность пребывания молекулы в возбужденном состоянии определяется радиационным, или естественным, временем жизни тау0=1/константу флуоресценции. Это то время, в течение которого число возбужденных молекул уменьшается в e раз. В реальных ситуациях квантовый выход обычно меньше единицы, поскольку с флуоресценцией конкурируют безызлучательные процессы: интеркомбинационная конверсия с переходом в триплетное возбужденное состояние, сопровождающееся изменением спина, внутренняя конверсия, диссипация в тепло, фотохимическая реакция или дезактивация за счет тушения флуоресценции при взаимодействии с молекулами тушителя Q.

В действительности квантовый выход флуоресценции меньше единицы вследствие существования в молекуле безызлучательных процессов; следовательно, реальное (или измеряемое) время жизни тау флуоресц окажется меньше тау): 1/сумму констант происходящих процессов (флуоресценция, фотосинтез, интеркомбинационная конверсия в триплетное состояние, диссипация в тепло (внутренняя конверсия), тушение*[Q]). Квантовый выход флуоресценции в этом случае выражается соотношением: фи=константа флуоресценции/сумму констант происходящих процессов, т.е. Фи=константа флуоресценции*время жизни.

В отсутствие тушителя квантовый выход флуоресценции обозначают как фи фл0. Фи фл0/фи фл= 1 + константаq*[Q])/сумму всех констант без тушителя, то, обозначив время жизни в отсутствие тушителя через тау фл0 (не путать с тау0 которая вообще без побочных процессов), получим, что тау фл0 =1/ сумму всех констант без тушителя и (фи фл0/фи фл)1= тау фл0* константаq*[Q]=K[Q]. I=I0/(1+ K[Q]). Последнее уравнение называется соотношением Штерна и Фольмера, а К - константой тушения. Последняя легко определяется экспериментально при измерении интенсивностей флуоресценции различных образцов, отличающихся концентрацией тушителя. Для этого достаточно оценить угловой коэффициент прямой в координатах I без тушителя/(Iс тушителем - 1) и [Q].

Исходя из определения квантового выхода флуоресценции фи=I фл/(I0-Iпрошедшего через объект), с использованием закона Ламберта - Бэра можно установить связь между интенсивностью флуоресценции I и молярным коэффициентом поглощения, а также концентрацией с: I=K*I0*(1-Т)*фи, где I0- интенсивность возбуждающего света, (1 - Т) - величина поглощения, Т - величина пропускания, К - коэффициент пропорциональности, зависящий от способа измерения.

Так как D= - lg Т = эпсилон*с1, где D - оптическая плотность, то I=K*I0*(1-10 в степени -D)*фи. Выражение в скобках можно разложить в ряд при небольших значениях D и ограничиться линейным членом: I примерно=2,3K*I0*эпсилон*cl*фи

Это означает, что при малых оптических плотностях (меньше 0,1-0,2) I пропорциональна концентрации флуоресцирующего вещества и интенсивности возбуждающего света.

Точное измерение интенсивности флуоресценции осложняется целым рядом факторов: реабсорбцией флуоресценции, экранированием возбуждающего света другими молекулами, светорассеянием, гетерогенностью объекта, миграцией энергии, тушением флуоресценции. При комнатной температуре квантовый выход флуоресценции хлорофилла в нативных фотосинтетических мембранах составляет не более 3%. Низкотемпературная техника может ослабить влияние возбуждающего света, вызывающего побочные процессы. Флуоресценция хлорофилла в нативных фотосинтетических мембранах продуцируется молекулами хлорофилла антенны и при комнатной температуре характеризуется главным максимумом 684-687 нм и «плечом» в более длинноволновой области около 720-730 нм. В случае целых листьев из-за реабсорбции доля длинноволновой полосы возрастает. При комнатной температуре квантовый выход для фотосистемы 1 в несколько раз меньше, чем для фотосистемы 2.

Люминесценция - «холодное» свечение некоторых веществ (люминофоров); излучение, представляющее собой избыток над тепловым излучением тела при данной температуре и имеющее длительность, значительно превышающую период световых волн. Характеристики: спектр возбуждения, спектр люминесценции, квантовый выход, время жизни молекулы в возбужденном состоянии. Она делится на уже описанную флуоресценцию (быструю люмин) и фосфоресценцию (медленную люмин). Фосфоресценция – переход с нижнего колебательного уровня триплетного состояния T1 на основное возбужденное (время жизни возбужденного состояния при фосфоресценции составляет порядка 10 в −2 – 10 в −4 с, т.к. синглет-триплетные переходы имеют квантово-механический запрет – так может делать хлорофилл). Механизмы миграции хорошо отражает рис 3 и описанные ранее процессы.

Рис. 3. Схематическое изображение физического механизма люминесценции: жирными горизонтальными линиями обозначены энергетические состояния молекулы люминесцирующего вещества; S0 - основное (невозбужденное) состояние; S2, S2 и Т1 - возбужденные состояния; тонкими горизонтальными линиями обозначены колебательные уровни (0, 1, 2.,. или 0’, 1’, 2’ и т.д.); в прямоугольниках показано направление спина возбужденного электрона (слева) по отношению к спину оставшегося электрона; ВК - внутренняя конверсия (переходы электрона без обращения спина); ИК - интеркомбинационная конверсия (переходы электрона с обращением спина). При поглощении энергии молекула переходит в возбужденное состояние S1 или S2 (обозначено синими вертикальными стрелками). Часть поглощенной энергии преобразуется в тепло (обозначено волнистыми стрелками), при этом молекула переходит на нижний колебательный уровень состояния S1 или трансформируется в состояние Т1 Возвращение молекулы из состояния S1 или Т1 на исходный энергетический уровень может сопровождаться излучением света - флюоресценцией (обозначена темно-зелеными стрелками) или фосфоресценцией (обозначена светло-зелеными стрелками).

Люминесценция биологических объектов может быть собственной (первичной) либо возникать после соответствующей химической модификации имеющихся веществ (вторичная), а также после введения так называемых флюоресцентных зондов.

Флюоресцирующие соединения могут быть определены в очень низких концентрациях, часто в присутствии посторонних веществ. Поэтому регистрация люминесценции успешно используется для количественного определения многих биологически важных веществ. Одним из наиболее ярко флюоресцирующих лекарственных соединений является хинин. В кислых растворах он люминесцирует в синей области (450-475 нм). Чтобы определить его в плазме крови проводят осаждение белков метафосфорной кислотой и измеряют люминесценцию хинина прямо в фильтрате. Яркой синей флюоресценцией обладает противогрибковый препарат гризеофульвин, он легко определяется в экстрактах из крови или мочи. Барбитураты в щелочной среде обладают яркой зеленой флюоресценцией, их можно определить в экстрактах из биологического материала. После экстракции возможна количественная регистрация многих витаминов, например витамина Е, максимум флюоресценции которого лежит в УФ-области при 330 нм. Витамин В6 имеет синюю, а витамин А - зеленую флюоресценцию. Витамины С, D, В12 и др. удается определить по вторичной люминесценции. Наркотические вещества морфин и героин флюоресцируют очень слабо, но после обработки образцов серной кислотой с последующим выщелачиванием возникает специфическая интенсивная синяя флюоресценция продуктов реакции. Этим методом удается определить до 0,02 мкг наркотика в пробе. Чувствительным лабораторным методом определения АТФ является регистрация хемилюминесценции в присутствии люциферина и люциферазы светлячка. Люцифераза катализирует реакцию восстановленного люциферина с АТФ; продукт этой реакции - аденилат при окислении испускает свет. По собственной люминесценции проводят контроль качества пищевых продуктов. Так, при длительном хранении молока и сливок рибофлавин окисляется в люмихром, что сопровождается изменением цвета флюоресценции от желто-зеленого к синему. Яйца, зараженные некоторыми видами бактерий рода Pseudomonas, при УФ-облучении начинают интенсивно флюоресцировать (за счет пигмента пиовердина, синтезированного этими бактериями).

Регистрация люминесценции позволяет получать важную информацию о физико-химических свойствах биологических объектов в норме и патологии. Молекулярные механизмы работы цепи переноса электронов в митохондриях, целых клетках и даже в тканях изучают по изменению синей (440 нм) флюоресценции восстановленных пиридиннуклеотидов, возбуждаемой при 365 нм. При изучении структуры нуклеиновых кислот применяют акридиновый оранжевый и другие зонды. При этом определение положения максимума люминесценции в спектре позволяет судить о структуре нуклеиновой кислоты. Так, максимум акридинового оранжевого и двуспиральной нативной ДНК располагается в зеленой области спектра (530 нм), тогда как в одноцепочечной ДНК и РНК он смещается в красную область (640 нм). Микрофлюориметрически с помощью зондов анализируют ДНК непосредственно в клетках. В медицинской технике распространение получили неорганические люминофоры - вещества, способные к фото-, рентгенофлюоресценции и т.д.

Биолюминесценция – видимое свечение организмов, связанное с процессами их жизнедеятельности; являет собой результат биохимической реакции, в которой химическая энергия возбуждает специфическую молекулу, и та излучает свет. Наблюдается у нескольких десятков видов бактерий, низших растений (грибов), у некоторых беспозвоночных животных (от простейших до насекомых включительно), у рыб. Светящиеся организмы иногда размножаются в таком количестве, что вызывают свечение моря. У многих организмов (бактерии, простейшие, ракообразные, грибы и др.) свечение происходит постоянно и непрерывно, если в окружающей среде есть кислород. У других биолюминесценция происходит отдельными вспышками и связана с условиями жизнедеятельности (голод, период размножения и др.). Биологическое значение биолюминесценции различно. Так, у светящихся насекомых вспышки биолюминесценции служат сигналом, позволяющим самцам и самкам находить друг друга; у ряда глубоководных рыб - для освещения и приманки добычи; у каракатицы - для защиты от хищников (путём выбрасывания светящейся жидкости) и др. В некоторых случаях источником биолюминесценции животного являются светящиеся бактерии-симбионты (например, т. н. несамостоятельное свечение ряда рыб).

Люминесценция: основные понятия ■ Упоминание о люминесценции датируется XV веком, когда было описано свечение неорганических кристаллов. Возникновение люминесценции многие связывают с моментом выхода работы Давида Брустера, который в 1833 году описал красную флуоресценцию хлорофилла. ■ The Hound of the Baskervilles (Конан Дойл Артур).

Люминесцения: основные понятия ■ Итак, что такое люминесценция? Определение этого понятия довольно сложно и исходит из сопоставления свойств люминесцентного излучения и законов теплового равновесного излучения. Под тепловым излучением понимают электромагнитное излучение, обусловленное возбуждением частиц вещества (атомов, молекул, ионов) вследствие их теплового движения. Чтобы вызвать люминесценцию вещества к нему необходимо подвести извне определенное количество энергии. ■ Люминесценция – это свечение атомов, молекул и других более сложных комплексов, возникающего в результате электронного перехода в этих частицах при их возвращении из возбужденного состояния в нормальное (В. Л. Левшин).

Люминесцения: основные понятия ■ Люминесценция – это излучение (B`v, T), представляющее собой избыток над тепловым излучением (Bv, T) вещества при данной температуре и имеющее длительность (>10 -10 c), значительно превышающую период световых волн (Видеман - Вавилов).

Src="https://present5.com/presentation/37574361_76674408/image-5.jpg" alt="Классификация видов люминесценции n По длительности свечения: флуоресценция (~10 -8 c), фосфоресценция (>10 -6"> Классификация видов люминесценции n По длительности свечения: флуоресценция (~10 -8 c), фосфоресценция (>10 -6 с). n По способу возбуждения (таблица). n По механизму свечения: свечение дискретных центров – поглощающими и излучающими центрами являются одни и те же частицы (атомы, молекулы, ионы); рекомбинационное свечение – процессы поглощения и излучения разделены во времени и в пространстве. В процессе возбуждения происходит разделение частицы вещества на две противоположно заряженные части. Последующая их рекомбинация сопровождается выделением энергии.

Основные характеристики люминесценции n Спектры поглощения: A = f(λ); A = f(v); T, % = f(λ); T, % = f(v). n Cпектры люминесценции: I = f(λ); I = f(v). n Спектры возбуждения: зависимости интенсивности люминесценции (I) от частоты (волнового числа) или длины волны возбуждающего света; у частиц, люминесцирующих по типу дискретных центров, спектры возбуждения идентичны спектрам поглощения. n Энергетический выход люминесценции. n Квантовый выход люминесценции. n Время жизни возбужденного люминесцентного центра.

Выход люминесценции n Способность вещества к люминесценции в данной среде характеризуется величиной выхода люминесценции. n Различают абсолютный квантовый и энергетический выходы люминесценции и относительный выход люминесценции. n Абсолютным квантовым выходом люминесценции (φкв) называют отношение числа квантов Nл, излученных веществом, к числу поглощенных квантов возбуждающего света Nп: φкв = Nл / Nп ■ φкв определяется соотношением между вероятностями излучательного (α) и безызлучательного (β): φкв = α / α + β

Выход люминесценции n Абсолютным энергетическим выходом люминесценции (φэн) называют отношение излучаемой веществом энергии Ел к поглощенной энергии возбуждения Еп: φэн = Ел / Еп ■ Абсолютный энергетический и квантовые выходы связаны простым соотношением: φэн = Ел / Еп = Nл hvл / Nп hvп = φкв (vл / vп) или φэн = φкв (λп / λл); φкв = φэн (λл / λп) ■ Измерение абсолютных выходов люминесценции представляет трудную задачу, поэтому на практике чаще измеряют относительный выход люминесценции.

Время жизни возбужденного люминесцентного центра n В случае люминесцентных дискретных центров число возбужденных центров n после прекращения возбуждения в отсутствии безызлучательных процессов дезактивации будет уменьшаться со временем: -dn/dt = k 1 n, где k 1 – константа скорости мономолекулярного излучательного процесса. ■ Среднее излучательное время жизни (τ0) люминесцентного центра определяется выражением: τ0 = 1/ k 1

Время жизни возбужденного люминесцентного центра n Для грубых оценок применимо соотношение: 10 -4 τ0 ≈ ---- ε(λmax) n Таким образом, среднее излучательное время жизни возбужденного состояния тем меньше, чем интенсивнее поглощение, приводящее к его возникновению. n Поскольку имеют место безызлучательные процессы, измеряемые времена жизни τ всегда меньше τ0: 1 τ = ------ k 1 + k 2 + k 3

Энергетические переходы в молекуле n При комнатной температуре молекула обычно находится в n n основном S 0 синглетном состоянии. При поглощении энергии молекула оказывается в возбужденном электронном состоянии S 2. Далее практически мгновенно (~10 -12 с) в результате колебательной релаксации (КР) достигается невозбужденный колебательный уровень S 2. Далее также практически мгновенно (~10 -11 с) вследствие внутренней конверсии молекула перейдет в более низкое электронно-возбужденное состояние S 1. Переход S 1 → S 0 с испусканием фотона (10 -6 - 10 -9 с) – флуоресценция.

Энергетические переходы в молекуле ■ Безызлучательный переход S 1 → T 1 с изменением спина электрона – интеркомбинационная конверсия. n Переход T 1 → S 0 с испусканием фотона (>10 -4 c) – фосфоресценция.

Замедленная флуоресценция n Помимо флуоресценции и фосфоресценции существует еще один вид люминесценции – замедленная флуоресценция. n Этот вид молекулярной люминесценции наблюдается в весьма ограниченных диапазонах температур, вязкостей и концентраций растворов. n По сравнению с флуоресценцией и фосфоресценцией ее интенсивность невелика и достигает максимальных значений при комнатной и более высоких температурах, заметно ослабевая с понижением температуры. n Различают замедленную флуоресценцию Е – типа.

Замедленная флуоресценция Е - типа n Замедленная флуоресценция Е – типа: за счет термической активации молекул в состоянии Т 1 происходит их переход на более высокие колебательные уровни, которые могут перекрываться с колебательными уровнями S 1 и и становится возможным переход Т 1 → S 1.

Замедленная флуоресценция n Замедленная флуоресценция Р - типа (наблюдаемая у молекул пирена и других ароматических соединений): возникает при переносе энергии в результате столкновений

Диаграмма потенциальной энергии n При рассмотрении люминесценции полезно рассмотрение диаграммы потенциальной энергии. n Ограничимся двумерными диаграммами, относящимися, строго говоря, к случаю двухатомной молекулы.

Диаграмма потенциальной энергии n Кривые потенциальной энергии состояний S 1 и T 1 пересекаются в некоторой точке. n В этой точке положение и импульсы атомных ядер одни и те же, т. е. возможен S 1 → T 1 переход. n В сложных многоатомных молекулах многомерные потенциальные поверхности могут пересекаться во многих точках, что увеличивает вероятность ИК. n Принцип Франка – Кондона. Согласно этому принципу электронные переходы являются настолько быстрыми процессами (10 -13 с) по сравнению с движением ядер (10 -12 с), что за время электронного перехода ядра не успевают изменить ни своей скорости ни своего взаимного расположения.

Принцип Франка - Кондона n Поэтому прежнее положение ядер будет соответствовать изменившимся в результате электронного перехода силам только в том случае, если молекула будет совершать достаточные колебания. n Так, при электронном возбуждении молекулы прочность связи мгновенно ослабевает, а ядра в первый момент продолжают занимать прежнее близкое друг к другу положение (сжатая молекула). n Такое несоответствие приводит к тому, что молекула начинает совершать колебания. n За короткое время жизни возбужденного состояния (10 -9 с) избыточная колебательная энергия успевает распределиться между многочисленными колебаниями молекулы или передаться окружающей среде.

Принцип Франка - Кондона n В результате молекула из неравновесного Франк – Кондоновского состояния переходит в равновесное, в котором ядра в соответствии с ослабленной связью разнесены друг от друга и совершают относительно этого положения колебания. n Далее – при испускании кванта люминесценции прочность связи в молекуле мгновенно усиливается, ядра же в первый момент продолжают занимать прежнее, далекое друг от друга положение (растянутая молекула). n И снова – переход из неравновесного Франк - Кондоновского состояния в равновесное осуществляется в результате колебаний.

Принцип Франка - Кондона n Итак, согласно принципу Франка - Кондона, при электронном возбуждении внутримолекулярные связи, как правило, ослабляются. n Это приводит к тому, что минимум потенциальной кривой возбужденного состояния расположен при несколько большем межъядерном расстоянии, чем у основного состояния. n Как следует из квантовой механики, наиболее вероятное межъядерное расстояние для молекулы с нулевой колебательной энергией соответствует средней точке АВ или CD.

Принцип Франка - Кондона n Наиболее вероятными будут переходы, отвечающие вертикальным линиям, проведенным из середины отрезков АВ (поглощение)или CD (испускание) до пересечения с соответствующими потенциальными кривыми:

Фотолюминесценция n Способность веществ к люминесценции, как и к поглощению излучения, связана с их электронным строением. n Например, если низшее возбужденное синглетное состояние органической молекулы обусловлено π → π* переходом, то она часто имеет высокие выходы и флуоресценции и фосфоресценции. n В тех же случаях, когда низшее возбужденное синглетное состояние возникает в результате n → π* перехода, то молекула обычно обладает малым выходом флуоресценции, но может обладать высоким выходом фосфоресценции при низкой температуре. n Обычно переход n → π* является наиболее длинноволновым переходом.

Фотолюминесценция n Вероятность такого перехода мала (ε λmax ~ (1 - 2) 103 M -1 см-1), а время жизни возбужденного синглетного состояния n , π*, а значит и вероятность безызлучательной дезактивации велики. n Экспериментально установлено, что разница в энергиях S 1 ↔ T 1 для состояния n , π* в 2 - 4 раза меньше, чем для состояния π, π*. n Все это приводит к тому, что часто соединения, содержащие n - электроны, слабо или вовсе не флуоресцируют, но сильно фосфоресцируют.

Структура и оптические свойства молекул n Замечено, что наибольшей способностью к люминесценции обладают симметричные молекулы с протяженной системой сопряженных связей, склонные к образованию орто - и пара - хиноидных колец. n Одним из наиболее важных факторов, обуславливающих люминесценцию, является требование о наличии жесткой и плоской структуры. n По - видимому, относительное вращение частей «гибкой» молекулы возмущает электронные оболочки и облегчает безызлучательные переходы. n Например, известный гормон адреналин не люминесцирует, но при окислении превращается в ярко люминесцирующий триоксидон.

Структура и оптические свойства молекул n Люминесцирующий флуоресцеин отличается от нелюминесцирующего фенолфталеина только тем, что в молекуле флуоресцеина кислородный мостик жестко удерживает два кольца в одной плоскости: флуоресцеин фенолфталеин

Основные закономерности молекулярной люминесценции n Правило Каши: форма спектра люминесценции не зависит от длины волны возбуждающего света. n Закон Стокса - Ломмеля: спектр люминесценции в целом и его максимум сдвинут со спектром поглощения и его максимумом в длинноволновую область. n Правило Левшина (правило зеркальной симметрии): нормированные спектры поглощения и флуоресценции, представленные в виде графиков ε = f(v) и I/v = f(v), зеркально симметричны относительно прямой, перпендикулярной к оси частот и проходящей через точку пересечения спектров v 0.

Основные закономерности молекулярной люминесценции n Правило Левшина: va + vf = 2 v 0, где va, vf – симметричные частоты поглощения и флуоресценции; v 0 – частота чисто электронного перехода, т. е. перехода между нулевыми колебательными уровнями S 0 ↔ S 1; ∆v = va - vf = 2(va - v 0)

Основные закономерности молекулярной люминесценции n Закон Вавилова: по мере увеличения λв энергетический выход флуоресценции возрастает, сохраняет постоянную величину и затем уменьшается.

Закон затухания люминесценции n Для интенсивности люминесценции Iл, определяемой скоростью испускания квантов люминесценции, имеем: dn Iл = - --- = k 1 n 0 e-k 1 t = Iл 0 e-k 1 t, dt где Iл 0 – интенсивность люминесценции в первый момент после прекращения возбуждения. n Таким образом, интенсивность люминесценции дискретного центра уменьшается со временем по экспоненциальному закону. n Затухание рекомбинационного свечения происходит по более сложному гиперболическому закону.

Зависимость интенсивности люминесценции от концентрации n При стационарном (непрерывном) возбуждении образца и отсутствии тушения: Iл = k 1 φкв Nп (Nп – число поглощенных квантов); Nп = k 2 (I 0 – I); I = I 0 10 -εℓC; Iл = k φкв I 0 (1 - 10 -εℓC), где k – коэффициент пропорциональности; Разложение 10 -εℓC в ряд дает: (2, 3εℓC) 2 (2, 3εℓC)3 1 - 2, 3εℓC + ---- - ---- + ……. ; 2! 3!

Зависимость интенсивности люминесценции от концентрации ■ При εℓC ≤ 10 -2 вклад третьего и последующих членов разложения незначительны: Iл = 2, 3 k φкв I 0 ε ℓ C; Iл = k C; обычно ε ~ 103 – 104, тогда при ℓ = 1 см Сi = 10 -5 – 10 -6 M

Причины отклонения зависимости Iл = k. C от линейности ■ Эффект внутреннего фильтра связан с поглощением части возбуждающего излучения при прохождении через слой люминофора; ■ Самопоглощение – поглощение люминофором части люминесцентного излучения; ■ Тушение люминесценции: концентрационное тушение (образование нелюминесцирующих агрегатов, миграция энергии от возбужденных молекул к невозбужденным); температурное тушение (внутримолекулярный процесс, обусловленный значительным увеличением колебательной энергии при повышении Т);

Тушение люминесценции ■ Тушение люминесценции: тушение посторонними веществами (тяжелые ионы: I-, Br-, Cs+, Cu+; парамагнитные Mn 2+, O 2; молекулы растворителя); статическое тушение (примесное вещество образует с невозбужденным люминофором нелюминесцирующие продукты); динамическое тушение (примесное вещество образует с возбужденным люминофором нелюминесцирующие продукты).

Тушение люминесценции ■ Уравнение Штерна - Фольмера: φкв(Q) = k 1 / (k 1 + k 2 + k 3 [Q];

Практическое применение люминесценции Флуориметрические определения: cобственная люминесценция (UO 22+, комплексные галогениды тяжелых металлов Tl+, Sn 2+, Sb 3+, Te(IV), Pb 2+, Bi 3+, In 3+ и др. , кристаллофосфоры, органические соединения); флуоресценция комплексных соединений ионов металлов с органическими реагентами. ■ Фосфориметрические определения. ■ Временная селекция. ■ Синхронное сканирование спектров (производные спектры). ■ Хемилюминесцентный анализ. ■

Синхронные спектры ■ Синхронные спектры получают при одновременном (синхронном) сканировании (изменении) длин волн возбуждения и испускания с постоянным сдвигом Δλ между ними. ■ При этом наблюдается значительное упрощение спектров люминесценции сложных молекул, сужение их полос и, как следствие, повышение селективности определений, а также уменьшение фонового свечения за счет подавления релеевского и комбинационного рассеяния растворителя. ■ Оптимальным условием для достижения наиболее интенсивного сигнала и наименьшей полуширины линии является синхронное сканирование с условием: Δλ = λисп (макс.) - λвозб (макс.)

Трехмерные спектры ■ Трехмерные спектры представляют собой зависимость интенсивности люминесценции как от длины волны возбуждения, так и от длины волны испускания. ■ Трехмерные спектры имеют вид «горной гряды» . Каждая строка такой гряды представляет собой спектр излучения, а каждый столбец – спектр возбуждения. ■ Такие спектры получают из большого числа (обычно не менее 50) индивидуальных спектров люминесценции, записанных через определенные промежутки длин волн возбуждения. ■ Трехмерные спектры дают полную картину спектральных свойств исследуемого образца.

Контурные (двумерные) спектры ■ Использование трехмерных спектров для анализа смесей, содержащих более трех компонентов, и имеющих широкие размытые полосы в одной и той же спектральной области, представляет неразрешимую задачу. ■ В данном случае более перспективным является использование контурных спектров – результат сечения трехмерного спектра плоскостями, параллельными плоскости ХОУ, с последующим объединением полученных сечений в одной плоскости ХОУ. ■ Получающиеся изображения напоминают контурные карты (контурные спектры), которые являются «отпечатками пальцев» индивидуального соединения.

Хемилюминесцентный анализ ■ Хемилюминесцентный анализ основан на явлении хемилюминесценции (ХЛ). Этот вид свечения не требует внешнего источника возбуждения, а возникает за счет энергии экзотермических химических процессов: A + B → P* + C P* → P + hvcl n В растворах ХЛ наблюдается главным образом в реакциях окисления органических веществ кислородом или пероксидом водорода. n Образование продуктов реакции происходит чаще всего по сложному радикально-цепному механизму. n Так, многие полагают, что окисление люминола (I) протекает с участием радикалов HO 2*, HO*, O 2*.


Хемилюминесцентный анализ ■ Основные группы определяемых соединений: хемилюминесцентные соединения, которые при окислении излучают свет (люминол, люцигенин, лофин и др.); окислители (пероксид водорода, гипохлориты, гипобромиты, персулфаты, перманганат калия, молекулярный кислород и др.); катализаторы индикаторных реакций (ионы меди, кобальта, марганца, никеля, железа и др.); ингибиторы индикаторных реакций (ароматические соединения, содержащие фенольные и аминогруппы); соединения, изменяющие р. Н среды (щелочи, карбонаты, органические основания и др.). ■ Сортовой ХЛ анализ и индикаторные методы.

Хемилюминесцентный анализ ■ Сортовой ХЛ анализ применяется при испытаниях вин, соков плодов и овощей, мясных экстрактов и т. д. Так, по реакции окисления люминола в присутствии катализатора - комплекса ионов меди с α-аминокислотами, содержащимися в соке картофеля, можно улавливать сортовые различия картофеля: сорта различаются по содержанию аминокислот. ■ К индикаторным методам ХЛ анализа относятся различные виды титрования с использованием хемилюминесцентных индикаторов (ХЛИ). В отличии от флуоресцентных индикаторов для работы с ХЛИ не требуется источника возбуждения.

Хемилюминесцентный анализ (аналитические характеристики) ■ Большей частью ХЛ – определения отличаются высокой чувствительностью: пределы обнаружения 10 -10 – 10 -4 г/мл при конечном объеме 2 – 5 мл. ■ Селективность ХЛ – определений, как правило, невысока, так как многие вещества влияют на скорость индикаторной реакции. Однако варьирование условий определения или применение маскирующих агентов позволяет «смягчить» этот недостаток. ■ Простота, доступность и дешевизна аппаратуры, используемой в ХЛ, в сочетании с возможностью экспрессного, высокочувствительного, а при определенных условиях, и селективного определения большого круга соединений обуславливает распространенность ХЛ.

Просмотров