Физические свойства концентрированной серной кислоты. Химические свойства. Опасность для здоровья

Серная кислота - одна из сильнейших кислот, представляющая собой маслянистую жидкость. Химические свойства серной кислоты позволяют широко применять её в промышленности.

Общее описание

Серная кислота (H 2 SO 4) обладает характерными свойствами кислот и является сильным окислителем. Это наиболее активная неорганическая кислота с температурой плавления 10°C. Кислота закипает при 296°C с выделением воды и оксида серы SO 3 . Способна поглощать пары воды, поэтому её используют для осушения газов.

Рис. 1. Серная кислота.

Серную кислоту получают промышленным путём из диоксида серы (SO 2), который образуется при горении серы или серного колчедана. Два основных способа образования кислоты:

  • контактный (концентрация 94 %) - окисление диоксида серы до трёхокиси серы (SO 3) с последующим гидролизом:

    2SO 2 + O 2 → 2SO3; SO 3 + H 2 O → H 2 SO 4 ;

  • нитрозный (концентрация 75 %) - окисление диоксидом азота диоксида серы при взаимодействии воды:

    SO 2 + NO 2 + H 2 O → H 2 SO 4 + NO.

Раствор SO 3 в серной кислоте называется олеумом. Его также используют для получения серной кислоты.

Рис. 2. Процесс получения серной кислоты.

Реакция с водой способствует выделению большого количества тепла. Поэтому к воде примешивают кислоту, а не наоборот. Вода легче кислоты, она остаётся на поверхности. Если добавить воду в кислоту, вода мгновенно закипит, что приведёт к разбрызгиванию кислоты.

Свойства

Серная кислота образует два вида солей:

  • кислые - гидросульфаты (NaHSO 4 , KHSO 4);
  • средние - сульфаты (BaSO 4 , CaSO 4).

Химические свойства концентрированной серной кислоты представлены в таблице.

Реакция

Что образуется

Пример

С металлами

Оксид серы;

Сероводород

С активными: 2H 2 SO 4 + Mg → MgSO 4 + SO 2 + 2H 2 O

С металлами средней активности: 4H 2 SO 4 + 2Cr → Cr 2 (SO 4) 3 + 4H 2 O + S;

С малоактивными: 2H 2 SO 4 + Cu → CuSO 4 + SO 2 + 2Н 2 О

С неметаллами

Кислота;

Оксид серы

2P + 5H 2 SO 4 → 2H 3 PO 4 + 5SO 2 + 2H 2 O

С оксидами

Оксид серы

Металлов: H 2 SO 4 + CuO → CuSO 4 + H 2 O;

Неметаллов: H 2 SO 4 + CO → CO 2 + SO 2 + H 2 O

С основаниями

H 2 SO 4 + 2NaOH → Na 2 SO 4 + 2H 2 O

Углекислый газ;

Кислота

Na 2 CO 3 + H 2 SO 4 → Na 2 SO 4 + CO 2 + H 2 O

Качественная реакция: H 2 SO 4 + BaCl 2 → BaSO 4 (белый осадок) + 2HCl

Окисление сложных веществ

Свободные галогены;

Оксид серы;

H 2 SO 4 + 2HBr → Br 2 + SO 2 + 2H 2 O;

H 2 SO 4 + 2HI → I 2 + 2H 2 O + SO 2

Обугливание сахаров (целлюлозы, крахмала, глюкозы)

Оксид серы;

Углекислый газ;

C 6 H 12 O 6 + 12H 2 SO 4 → 18H 2 O + 12SO 2 + 6CO 2

Рис. 3. Реакция с сахаром.

Разбавленная кислота не окисляет малоактивные металлы, стоящие в электрохимическом ряду после водорода. При взаимодействии с активными металлами (литием, калием, натрием, магнием) выделяется водород и образуется соль. Концентрированная кислота проявляет окислительные свойства с тяжёлыми, щелочными и щелочноземельными металлами при нагревании. Отсутствует реакция с золотом и платиной.

Серная кислота (разведённая и концентрированная) на холоде не взаимодействует с железом, хромом, алюминием, титаном, никелем. Благодаря пассивации металлов (образования защитной оксидной плёнки) серную кислоту можно перевозить в металлических цистернах. Оксид железа разрушается при нагревании.

Что мы узнали?

Из урока 9 класса узнали о свойствах серной кислоты. Это мощный окислитель, вступающий в реакции с металлами, неметаллами, органическими соединениями, солями, основаниями, оксидами. При взаимодействии с водой выделяется тепло. Получают серную кислоту из оксида серы. Концентрированная кислота без нагревания не взаимодействует с некоторыми металлами, что позволяет перевозить кислоту в металлической таре.

Тест по теме

Оценка доклада

Средняя оценка: 4.1 . Всего получено оценок: 150.

Является одним из самых известных и распространённых химических соединений. Объясняется это в первую очередь её ярко выраженными свойствами. Её формула - H2SO4. Это двухосновная кислота, обладающая высшей серы +6.

При обычных условиях серная кислота представляет собой жидкость без запаха и цвета, обладающую маслянистыми свойствами. Она получила достаточно широкое распространение в технике и различных отраслях производства.

На данный момент это вещество является одним из важнейших и наиболее распространённых продуктов химической промышленности. В природе залежи самородной серы попадаются не так часто, как правило, она встречается только в соединениях с другими веществами. Сейчас развивается добыча серы из различных соединений, в том числе из разнообразных промышленных отходов. В некоторых случаях даже газы могут быть приспособлены для получения серы и различных соединений с ней.

Свойства

Серная кислота пагубным образом влияет на любые Она забирает из них воду очень быстро, так что ткани и различные соединения начинают обугливаться. 100%-ная кислота является одной из самых сильных, при этом соединение не дымит и не разрушает

Реагирует с любыми металлами кроме свинца. В концентрированном виде начинает окислять многие элементы.

Использование серной кислоты

Главным образом серная кислота применяется в химической промышленности, где на её основе производят азотные и в том числе и суперфосфат, который на данный момент считается одним из наиболее распространённых удобрений. Ежегодно производят до нескольких миллионов тонн этого вещества.

В металлругии H2SO4 применяется для проверки качества получаемых изделий. При прокате стали могут возникать микротрещины, для того чтобы их обнаружить, деталь помещают в свинцовую ванну и травят 25%-м раствором кислоты. После этого даже мельчайшие трещины можно увидеть невооружённым взглядом.

Перед нанесением гальванопокрытий на металл необходимо его предварительно подготовить - зачистить и обезжирить. Так как серная кислота реагирует с металлами, она растворяет тончайший слой, а вместе с ним удаляются любые следы загрязнения. Кроме того, поверхность металла становится более шершавой, что лучше подходит для нанесения никелевого, хромового или медного покрытия.

Серная кислота применяется при обработке некоторых руд, также значительное её количество требуется в нефтяной промышленности, где её применяют главным образом для очистки различных продуктов. Она часто используется в химической промышленности, которая постоянно развивается. В результате обнаруживаются дополнительные возможности и способы применения. Это вещество может использоваться для производства свинцово-кислотных - различных аккумуляторов.

Получение серной кислоты

Главным сырьём для получения кислоты служат сера и различные соединения на её основе. Кроме того, как уже было сказано, сейчас развивается использование промышленных отходов для получения серы. При окислительном обжиге сульфидных руд отходящие газы содержат SO2. Его приспосабливают для получения серной кислоты. Хотя в России по-прежнему лидирующие позиции занимают производства на основе переработки серного колчедана, который сжигают в печах. При продувании воздуха через горящий колчедан образуются пары с высоким содержанием SO2. Для очистки от других примесей и опасных паров применяют электрофильтры. Сейчас в производстве активно используются разные способы получения кислоты, и многие из них связаны с переработкой отходов, хотя высока доля традиционных производств.

Одно из основных соединений в промышленности - серная кислота - имеет химическую формулу H2SO4 . Её молекула состоит из четырёх атомов кислорода, двух - водорода и одного - серы. Эта токсичная плотная маслянистая жидкость без запаха в очищенном состоянии не имеет цвета и обладает характерным «медным» привкусом. Плотность при нормальных условиях составляет 1,84 г/куб. см. Примеси придают неочищенному продукту желтоватую или буро-жёлтую окраску.

Соединение кипит при +296 °C, плавится при температуре +10,3 °C. Его кристаллы гигроскопичны и активно отнимают воду у всего окружающего, обугливают бумагу, древесину, сахар. Теплота гидратации при растворении столь велика, что вызывает вскипание смеси и разбрызгивание. Именно поэтому для смешения добавляют кислоту к воде, а не наоборот. Старинное название «купоросное масло» отсылает к XVIII-XIX вв. , когда серу для изготовления пороха получали разложением пирита на купоросных заводах. И до сих пор кристаллогидраты её солей именуются купоросами.

Медикам и строителям давно известен природный гипс - кристаллогидрат сульфата кальция. Садоводы и огородники любят медный купорос - ценный помощник в борьбе с различными вредителями и болезнями растений. Квасцы незаменимы в производстве красок и для дубления кожи. Десятиводный кристаллогидрат сульфата натрия - «глауберова соль» - используется в химической промышленности, деревопереработке и медицине (слабительное и желчегонное средство для людей и животных).

Сульфат бария или «бариевая каша» обладает уникальной способностью взаимодействовать с рентгеновским излучением, задерживая его, и это большой плюс при исследованиях полых органов человеческого тела.

Способы промышленного производства

В качестве сырья долгое время использовался природный минерал пирит - «серный колчедан». Сегодня ему на смену пришли элементарная сера или её соединения: сероводород, соли - сульфиты и сульфаты, а также газовые отходы теплоэлектростанций, работающих на неочищенной нефти. Производство имеет ряд последовательных стадий:

  1. Получение оксида серы (II), сернистого газа, путём сжигания серосодержащего сырья или его обжига в кислороде.
  2. Очистка газообразной фазы реагентов от твёрдых примесей.
  3. Окисление до оксида серы (III). Процесс описывается уравнением: 2SO2 + O2 = 2SO3.
  4. Поглощение водой: H2O + SO3 = H2SO4.

В общем объёме минеральных кислот, которые производятся сегодня химической промышленностью, H2SO4 занимает почётное первое место. При этом она является наиболее дешёвой, технологичной и не разрушает чёрные металлы в концентрированном состоянии.

Камерный метод получения

В эпоху средневековья алхимики синтезировали купоросное масло т. н. камерным способом. Для этого использовались специальные большие, размером с целую комнату, камеры, обложенные изнутри свинцом. Поверхности стенок в результате окисления покрывались защитным слоем сульфата свинца. При горении в присутствии воздуха смеси, состоящей из серы и калиевой селитры, образовывался твёрдый остаток оксидов азота и солей калия и выделялся газообразный оксид серы (III).

Он поглощался водой, имевшейся в камере, и позволял получить продукт малой крепости, которая требовала дальнейшей концентрации. После открытия каталитических свойств оксидов азота, камерный метод уступил место менее трудоёмким и более эффективным технологиям производства.

Современные способы синтеза

«Едва ли найдётся другое, искусственно добываемое вещество, столь часто применяемое в технике» - эти слова гениального русского учёного Д. И. Менделеева наглядно характеризуют ценность серной кислоты. Сегодня при её производстве используются две методики окисления диоксида серы:

  • контактная, использующая твёрдые катализаторы;
  • башенная (нитрозная), где катализаторами служат газообразные оксиды азота, а окислителем выступает кислород.

При контактном способе смесь реагентов пропускается сквозь твёрдый катализатор, расположенный слоями для увеличения поверхности. Нитрозный метод подразумевает орошение сырья водой или разбавленной кислотой в башенных реакторах. Первый способ более производителен и компактен, позволяет получать продукт большей чистоты при меньших затратах и постепенно вытесняет нитрозного конкурента.

Ускорителей процесса окисления было открыто немало. Наибольший эффект проявляют платина, оксиды ванадия V2O5 и железа Fe2O3. Но первая стоит дорого и быстро отравляется примесями мышьяка, содержащимися в газовой фазе SO2. Для поддержания каталитической активности оксида железа необходимы температуры свыше 600 °C. Наиболее экономичным признан ванадиевый катализатор - он и применяется в производстве.

При улавливании SO3 водой выделяется много тепла, и продукт закипает с образованием аэрозоля. Поэтому используется 100% концентрированная кислота, и получается олеум, который затем разбавляется до необходимых пропорций.

Химические свойства продукта

Серная кислота занимает привилегированное положение среди наиболее сильных минеральных кислот. Такую активность легко охарактеризовать высокой полярностью молекулярной связи водород - кислород, и, соответственно, лёгкостью её разрыва. Это придаёт H2SO4 не только ряд общих для всех соединений её класса свойств, например, взаимодействие кислот с металлами, но и специфические качества. Среди основных химических свойств стоит отметить:

  1. Действие на индикаторы. Кислая среда водных растворов изменяет окраску фиолетового лакмуса, метилового оранжевого и универсального индикатора - они приобретают красный цвет.
  2. Реакция диссоциации. В водном растворе проявляются свойства сильного электролита, и в результате двухступенчатой диссоциации соединение распадается на два однозарядных положительных иона водорода и сульфат-ион с двойным отрицательным зарядом.
  3. Взаимодействие с металлами. Разбавленная серная кислота может реагировать с металлами, которые стоят в электрохимическом ряду активности левее водорода. При этом образуется сернокислая соль, которая называется сульфатом, и водород. Сульфаты не имеют цвета, хорошо растворимы в воде и легко кристаллизуются.
  4. Реакция нейтрализации. В результате взаимодействия с растворимыми и нерастворимыми основаниями образуется сульфатная соль и вода. Молекула H2SO4 имеет два атома водорода, поэтому кислота - двухосновная, и для полной нейтрализации требуется две молекулы основания.
  5. Взаимодействие с основными оксидами. Соединения с кислородом одно- и двухвалентных металлов (MgO, FeO, Li2O, Na2O) тоже участвуют в реакции нейтрализации. При этом образуется сульфат металла из состава оксида и вода.
  6. Обменные реакции с солями более слабых или легколетучих кислот. Происходит вытеснение и в результате образуется сульфатная соль и кислота (или выделяется летучий газ, а вода остаётся в растворе). Выпадение белого нерастворимого осадка BaSO4 - это качественная реакция на сульфат-ионы.

Специфические свойства концентрированных растворов обусловлены структурными особенностями формулы серной кислоты : в молекуле H2SO4 положительно заряженный атом серы находится в максимальной, четвёртой степени окисления. Поэтому он может только принимать электроны и сообщать соединению высокие окислительные свойства. Стоит отметить некоторые из них:

  1. Окисление большинства металлов, в т. ч. пассивных (цинк и медь). В этих реакциях водород уже не выделяется, а H2SO4 восстанавливается до сероводорода, серы или оксида серы (II). Это определяется концентрацией исходных компонентов и местом, которое занимает метал в электрохимическом ряду активности. Исключение составляют золото, железо, алюминий и платиноиды, поэтому для перевозки автомобильным и железнодорожным транспортом используют стальные цистерны.
  2. Окисление многих неметаллов. В результате реакции неметалл образует соединение с максимальным окислительным числом, а H2SO4 восстанавливается до оксида серы (IV).
  3. Окисление сложных соединений. При обработке калиевых солей галогеноводородных кислот (KBr или KI) образуется сульфатная соль и выделяется свободный галоген. Хлорид-ионы не окисляются до хлора и позволяют получать соляную кислоту реакцией обмена.
  4. Дегидратация органических веществ. Химически связанная вода легко удаляется из гидроксильных групп в присутствии концентрированной H2SO4: из этилового спирта образуется этилен. Обугливание углеводов тоже объясняется обезвоживанием.

Интересно, что в природе эта едкая кислота встречается в чистом 100%-м виде: на итальянском острове Сицилия существует уникальное Озеро смерти, к которому не приближаются даже насекомые и птицы. В этих местах дисульфид железа из земной коры выступает сырьём для синтеза H2SO4, и продукт сочится прямо из дна! Действующие вулканы тоже вносят вклад - извергают в земную атмосферу сернокислотные выбросы, которые причиняют непоправимый вред окружающей среде и становятся причиной серьёзных климатических изменений.

Применение в народном хозяйстве

Достижения химии всегда служили научно-техническому прогрессу. Высокие окислительные способности позволили H2SO4 стать важным компонентом в ряде отраслей промышленности. Её используют:

  • добыча редких элементов (очистка урановых, иридиевых, циркониевых и осмиевых руд);
  • производство минеральных удобрений, высокомолекулярных нитей, красок и пиротехники;
  • неорганический синтез солей и кислот;
  • текстильная и кожевенная отрасли;
  • нефтехимия и металлообработка;
  • пищевая промышленность (добавка-эмульгатор E513);
  • автомобилестроение (электролит в аккумуляторах);
  • дистиллирование воды (реагент для восстановления смол в фильтрах).

Отдельно стоит упомянуть промышленный органический синтез - источник эфиров и спиртов, синтетических моющих средств и искусственных волокон. Он немыслим реакций дегидратации, гидратации, сульфирования, алкилирования. Металлообрабатывающие заводы очищают поверхности изделий от окислов, образующихся при сильном нагревании. Но основным потребительским сегментом является изготовление минеральных удобрений (больше всего - фосфорных). Из-за этого сернокислотные заводы рекомендуется размещать недалеко от предприятий по производству этих ценных химических продуктов.

Все приведённые положительные характеристики были бы неполными, если не вспомнить, что серная кислота и олеум - опасные , чрезвычайно агрессивные продукты. Атмосферные кислотные аэрозоли периодически образуются в результате выбросов металлургических и химических заводов и выпадают в виде осадков. Они поражают кожу и слизистые, что приводит к затруднению дыхания, провоцирует кашель и бронхолёгочные заболевания с отёками гортани.

При попадании на кожные покровы возникают химические ожоги , их тяжесть напрямую зависит от концентрации и площади контакта. При проглатывании появляются резкие боли во рту и пищеводе, затем начинается рвота, кашель, затрудняется дыхание и ослабляется сердечная деятельность, а смертельной считается доза 5 мг. Первая помощь при отравлении парами заключается в обеспечении притока свежего воздуха и промывании слизистых содовым раствором. При растекании по коже поражённое место обильно орошают водой, а проглатывание требует промывания желудка и приёма известковой воды.

Серная кислота - важнейший продукт химической промышленности. Формула серной кислоты H 2 SO 4 . Бесцветная маслянистая жидкость, тяжелее воды. При смешивании с водой образуются гидраты, происходит сильное разогревание, поэтому категорически запрещено вливать воду в концентрированную серную кислоту. Следует вливать серную кислоту в воду тонкой струйкой при постоянном перемешивании.

Серная кислота отнимает воду от органических веществ, обугливая их. В промышленности способность концентрированной серной кислоты связывать воду используется для осушения газов.

Серная кислота - сильный электролит, в водном растворе диссоциирует полностью. Окрашивает индикаторы лакмус и метилоранж в красный цвет.

Строго говоря, отщепляется один ион водорода (диссоциация по второй ступени очень мала):

H 2 SO 4 = H + + HSO 4 −

Металлы, расположенные в ряду напряжений левее водорода, вытесняют из растворов серной кислоты водород:

Zn + H 2 SO 4 = ZnSO 4 + H 2 (образуется соль - сульфат цинка)

Окислителем в данной реакции является водород кислоты:

Zn 0 + H 2 +1 SO 4 = Zn +2 SO 4 + H 2 0

Концентрированная серная кислота взаимодействует при нагревании и с металлами правее водорода, кроме золота и платины. Окислителем будет сера. В реакции с медью восстанавливается до оксида серы (IV):

Cu + 2H 2 SO 4 = CuSO 4 + SO 2 + 2H 2 O (выделяется бесцветный газ)

с указанием степеней окисления:

Cu 0 + 2H 2 S +6 O 4 = Cu +2 SO 4 + S +4 O 2 + 2H 2 O

При концентрации близкой к 100 % серная кислота пассивирует железо реакция не идет.

С оксидами металлов реакция протекает с образованием соли и воды:

MgO + H 2 SO 4 = MgSO 4 + H 2 O

в ионном виде (оксиды на ионы не раскладываем!):

MgO + 2H + + SO 4 2− = Mg 2+ + SO 4 2− + H 2 O

MgO + 2H + = Mg 2+ + H 2 O

Серная кислота реагирует с основаниями, с образованием соли и воды:

2NaOH + H 2 SO 4 = Na 2 SO 4 + 2H 2 O

в ионном виде:

2Na + + 2OH − + 2H + + SO 4 2− = 2Na + + SO 4 2− + 2H 2 O

OH − + H + = H 2 O

Качественной реакцией на сульфат-ион является взаимодействие с солями бария - выпадает белый кристаллический осадок сульфата бария, нерастворимый в азотной кислоте:

H 2 SO 4 + BaCl 2 = BaSO 4 ↓ + 2HCl

2H + + SO 4 2− + Ba 2+ + 2Cl − = BaSO 4 ↓ + 2H + + 2Cl −

SO 4 2− + Ba 2+ = BaSO 4 ↓

Серная кислота используется для получения многих кислот, так как вытесняет их из солей. В лаборатории так можно получать соляную кислоту (при нагревании, с последующим растворением в воде выделяющегося хлороводорода) и др.:

2NaCl + H 2 SO 4 = Na 2 SO 4 + 2HCl

сокращенное ионное уравнение:

Cl − + H + = HCl

Серная кислота применяется в промышленности для очистки нефтепродуктов, поверхности металлов перед нанесением покрытий, очистки (рафинирования) меди, в производстве удобрений, глюкозы и пр.

2. Получение и собирание углекислого газа. Доказательство наличия этого газа в сосуде

Углекислый газ в лаборатории получают, приливая

  1. соляную кислоту к мелу:
    CaCO 3 + 2HCl = CaCl 2 + H 2 O + CO 2
  2. соляной или серной кислоты к соде:
    Na 2 CO 3 + 2HCl = 2NaCl + H 2 O + CO 2

Закрываем пробирку, где идет реакция, пробкой с газоотводной трубкой. Трубку опускаем в колбу (углекислый газ тяжелее воздуха), горлышко желательно прикрыть куском ваты.

Доказываем наличие углекислого газа, приливая в колбу прозрачный раствор известковой воды, взбалтываем. Известковая вода мутнеет вследствие образования нерастворимого карбоната кальция:

Ca(OH) 2 + CO 2 = CaCO 3 ↓ + H 2 O

С разбавленными кислотами, которые проявляют окислительные свойства за счет ионов водорода (разбавленные серная, фосфорная, сернистая, все бескислородные и органические кислоты и др.)



реагируют металлы:
расположенные в ряду напряжений до водорода (эти металлы способны вытеснять водород из кислоты);
образующие с этими кислотами растворимые соли (на поверхности этих металлов не образуется защитная солевая
пленка).

В результате реакции образуются растворимые соли и выделяется водород:
2А1 + 6НСI = 2А1С1 3 + ЗН 2
М
g + Н 2 SO 4 = М gS О 4 + Н 2
разб.
С
u + Н 2 SO 4 X (так как С u стоит после Н 2)
разб.
РЬ + Н 2
SO 4 X (так как РЬ SO 4 нерастворим в воде)
разб.
Некоторые кислоты являются окислителями за счет элемента, образующего кислотный остаток, К ним относятся концентрированная серная, а также азотная кислота любой концентрации. Такие кислоты называют кислотами-окислителями.

Анионы данных кислот содержат атомы серы и азота в высших степенях окисления

Окислительные свойства кислотных остатков и значительно сильнее, чем нона водорода Н, поэтому азотная и концентрированная серная кислоты взаимодействуют практически со всеми металлами, расположенными в ряду напряжений как до водорода, так и после него, кроме золота и платины. Так как окислителями в этих случаях являются ноны кислотных остатков (за счет атомов серы и азота в высших степенях окисления), а не ноны водорода Н, то при взаимодействии азотной, а концентрированной серной кислот с металлами не выделяется водород. Металл под действием данных кислот окисляется до характерной (устойчивой) степени окисления и образует соль, а продукт восстановления кислоты зависит от активности металла и степени разбавления кислоты

Взаимодействие серной кислоты с металлами

Разбавленная и концентрированная серные кислоты ведут себя по-разному. Разбавленная серная кислота ведет себя, как обычная кислота. Активные металлы, стоящие в ряду напряжений левее водорода

Li, К , Ca, Na, Mg, Al, Mn, Zn, Fe, Co, Ni, Sn, Pb, H2, Cu, Hg, Ag, Au

вытесняют водород из разбавленной серной кислоты. Мы видим пузырьки водорода при добавлении разбавленной серной кислоты в пробирку с цинком.

H 2 SO 4 + Zn = Zn SO 4 + H 2

Медь стоит в ряду напряжений после водорода – поэтому разбавленная серная кислота не действует на медь. А в концентрированной серной кислоты, цинк и медь, ведут себя таким образом…

Цинк, как активный металл, может образовывать с концентрированной серной кислотой сернистый газ, элементарную серу, и даже сероводород.

2H 2 SO 4 + Zn = SO 2 +ZnSO 4 + 2H 2 O

Медь - менее активный металл. При взаимодействии с концентрированно серной кислотой восстанавливает ее до сернистого газа.

2H 2 SO 4 конц. + Cu = SO 2 + CuSO 4 + 2H 2 O

В пробирках с концентрированной серной кислотой выделяется сернистый газа.

Следует иметь в виду, что на схемах указаны продукты, содержание которых максимально среди возможных продуктов восстановления кислот.

На основании приведенных схем составим уравнения конкретных реакций — взаимодействия меди и магния с концентрированной серной кислотой:
0 +6 +2 +4
С u + 2Н 2 SO 4 = С uSO 4 + SO 2 + 2Н 2 O
конц.
0 +6 +2 -2
g + 5Н 2 SO 4 = 4М gSO 4 + Н 2 S + 4Н 2 O
конц.

Некоторые металлы ( Fe . АI, С r ) не взаимодействуют с концентрированной серной и азотной кислотами при обычной температуре, так как происходит пассивации металла. Это явление связано с образованием на поверхности металла тонкой, но очень плотной оксидной пленки, которая и защищает металл. По этой причине азотную и концентрированную серную кислоты транспортируют в железных емкостях.

Если металл проявляет переменные степени окисления, то с кислотами, являющимися окислителями за счет ионов Н + , он образует соли, в которых его степень окисления ниже устойчивой, а с кислотами-окислителями — соли, в которых его степень окисления более устойчива:
0 +2
F е+Н 2 SO 4 = F е SO 4 +Н 2
0 разб. + 3
F е+Н 2 SO 4 = F е 2 (SO 4 ) 3 + 3 SO 2 + 6Н 2 O
конц


И.И.Новошинский
Н.С.Новошинская

Просмотров