Живая полимеризация. Блок-сополимеры. Ионная полимеризация мономеров. Катализаторы катионной и анионной полимеризации. Сополимеризация мономеров I. Влияние концентрации исходных веществ на скорость реакции роста цепи

Систематическое изучение анионной полимеризации ненасыщенных соединений началось в 1920-х годах Лебедевым, Циглером и др.

Активный центр при анионной полимеризации несет частичный или полный отрицательный заряд.

Мономеры, склонные к анионной полимеризации, имеют пониженную электронную плотность С=С-связи электроноакцепторным заместителем (акрилаты, акрилонитрил, этиленоксид, альдегиды, лактоны, лактамы, силоксаны) или имеют повышенную энергию сопряжения (стирол, диены). Кроме того, к анионной полимеризации также склонны многие из карбонилсодержащих соединений и гетероциклов, имеющие связи С=С, С=О, C=N и др.

Катализаторами являются сильные основания, основания Льюиса, т.е. доноры электронов - щелочные металлы, производные металлов I и II группы (алкилы, арилы, алкоголяты, амиды). Процессы, развивающиеся с участием переходных металлов, относят обычно к координационно-ионной полимеризации. Кроме того анионная полимеризация может быть вызвана электрическим током и излучениями высокой энергии.

Реакция инициирования может осуществляться двумя способами:

По типу кислотно-основного взаимодействия, в результате присоединения к мономеру аниона или соединения, включающего анион, например, инициирование анионной полимеризации виниловых мономеров амидом натрия в жидком аммиаке при низкой температуре:

- по типу окисления-восстановления, в результате переноса электрона между молекулами мономера и катализатора; например, при реакции металлов I группы, а также металлорганические соединения элементов I и II групп. Акту инициирования с участием металла предшествует стадия образования комплекса с переносом заряда (КПЗ) между катализатором и мономером:

или между металлом и ареном:

На второй стадии мономер вытесняет нафталин из нафтилинида натрия, в результате чего получается, как и в первой системе, анион-радикал мономера. Далее происходит рекомбинация анион-радикалов с образованием дианионов, к которым присоединяется мономер.

Процессы по типу окисления-восстановления характерны также для электрохимического и радиационно-химического инициирования. В принципе, при таком механизме возможно параллельное развитие анионных и радикальных реакций, однако в реально изученных системах случаи с заметным участием радикальных процессов не обнаружены.

Особенностью анионной полимеризации неполярных мономеров является ассоциация катализатора и растущих цепей в неполярных растворителях и диссоциация ионных пар на свободные ионы в полярных средах.

Активность анионного катализатора - металлалкила MeR находится в прямой зависимости от полярности связи Me-C, а также от растворителя, причем активные центры могут существовать в виде различающихся по реакционной способности и стереоспецифичности ковалентных поляризованных молекул (II), их ассоциатов (I), ионных пар разной степени сольватации (III,IV), свободных ионов (V):

Полимеризация неполярных мономеров (стирола, бутадиена, изопрена) в углеводородных растворителях нередко сопровождается индукционными эффектами вследствие недостаточной скорости инициирования. Эти эффекты можно исключить введением в систему промоторов электронодонорного типа, которые образуют с инициатором стехиометрические комплексы (простые эфиры, алкиламины и др.):

R-Me + nD R-Me×nD.

Присутствие электронодонора в координационной сфере металла приводит к обеднению электронами и ослаблению связи Ме-С. В реакциях, протекающих с разрывом связи Ме-С, это равнозначно повышению активности катализатора. Например, это явление благоприятствует 1,2 (3,4)-присоединению диенов и образованию синдиотактического полиметилметакрилата.

Рост цепи для анионной полимеризации характерен относительной стабильностью активных центров. Например, для неполярных полимеров в углеводородных растворителях суммарный процесс включает практически лишь стадии инициирования и роста цепи (т. н. “живые полимеры”, впервые описаны М.Шварцем (США)). Это позволяет создать условия для исследования механизма анионной полимеризации, а также для решения различных синтетических задач: получение полимеров с заданным ММР, в т. ч. практически монодисперсных; синтеза полимеров и олигомеров с концевыми функциональными группами, способными к дальнейшим превращениям поликонденсационного или полимеризационного типа, а также блок-сополимеров, привитых сополимеров и различных полимеров с регулируемым типом разветвления и др.

Участие противоиона в актах роста цепи обусловливает большие возможности воздействия на микроструктуру полимера, вплоть до образования в некоторых случаях стереорегулярных и оптически активных полимеров. В наибольшей степени ориентирующее влияние противоиона проявляется в углеводородной среде, где присутствует Li, наиболее стереоспецифичного из щелочных металлов, образуются 1,4-полиены (с преобладанием цис-структуры в случае изопрена или с равным содержанием цис- и транс-структур в случае бутадиена) и изотактический полиметилметакрилат. Среди щелочно-земельных металлов образованию цис-1,4-полидиенов и изотактического ПММА в наибольшей степени способствует Ва.

Реакции обрыва и передачи цепи характерны для анионной полимеризации мономеров с полярными функциональными группами. Это всегда более сложный процесс, сопровождающийся дезактивацией активных центров при взаимодействии с функциональными группами мономера и полимера. Энергия активации побочных реакций (как и передача цепи на растворитель в случае веществ с подвижным атомом водорода, например, толуола), как правило, выше, чем энергия роста цепи; поэтому понижение температуры способствует обычно подавлению побочных реакций.

Чаще всего общей реакцией обрыва цепи является перенос гидрид-иона на противоион или мономер:

Кинетика. Анионная полимеризация характеризуется большим разнообразием механизмов реакций и кинетических схем. В каждом конкретном случае выбор инициаторов и условий проведения процесса обусловлен необходимостью синтеза полимера определенной структуры и ММР. Скорость анионной полимеризации особенно при умеренных температурах намного выше скорости радикальной полимеризации. Это связано с более высокой действующей концентрацией активных частиц (в пределе она может быть равна исходной концентрации инициатора). Например, для стирола при 30°С порядок абсолютной константы скорости роста цепи (в л/моль×с) при переходе от литиевых ассоциатов II до свободных анионов (V) меняется от 10 -1 до 10 5 .

Общая кинетическая картина анионной полимеризации существенно осложнена упомянутой выше множественностью форм существования активных центров. Помимо указанных играют роль и более сложные образования, например, ионные тройники типа Р - , Ме + , Р - . Поэтому даже в случае живущих полимеров при быстрой стадии инициирования, когда суммарная концентрация растущих цепей равна исходной концентрации инициатора [С 0 ], общая скорость реакции роста цепи (u р) далеко не всегда описывается простым уравнением:

u р = k р [M]

,

где и [M] - начальная и текущая концентрации мономера, х=1-[M]/ - степень превращения мономера, n - число растущих концов в макромолекуле.

Часто наблюдаются более сложные зависимости общего вида:

,

где учитывается вклад различных форм активных центров.

Обычно порядок реакции по инициатору варьирует от 1 до 0, а порядок по мономеру равен в большинстве случаев равен 1.

Все более возрастает роль полимеризационных процессов, в которых рост цепи макромолекулы происходит под влиянием ионов. Вещества, инициирующие полимеризацию мономеров по ионному механизму, называются катализаторами. Если каталитическое инициирование приводит к росту цепи под действием карбониевого положительно заряженного иона (карбокатиона), М+[Кат]®М+[Кат]-, то имеет место катионная полимеризация,
если рост цепи вызывается отрицательно заряженным углеродным ионом (карбанионом), М+[Кат]®М - [Кат]+, то происходит анионная полимеризация. К ионным типам полимеризации относят также реакции роста цепи, происходящие путем координации мономера на поверхности катализатора, причем твердая поверхность катализатора в этом случае играет особую роль матрицы, которая постоянно репродуцирует полимерную цепь с определенным пространственным упорядоченным расположением составляющих ее звеньев. Реакционная система в случае ионной полимеризации часто является гетерогенной (неорганический или органометаллический твердый катализатор и жидкий органический мономер). Полимеризация под влиянием ионных катализаторов обычно происходит с большими, чем при радикальной, скоростями и приводит к получению полимера большей молекулярной массы.

Обычно катализаторами катионной полимеризации являются катализаторы Фриделя - Крафтса BF3; А1С13; SnCl4; TiCl4, т. е. сильные электроноакцепторные вещества. Они проявляют свою активность в присутствии небольших количеств сокатализатора (например, следов Н2О) для образования гидрид-иона (Н+). Энергия активации катионной полимеризации обычно не превышает 63 кДж/моль (15 ккал/моль), и поэтому скорость ее очень высока, а температурный коэффициент отрицателен (т. е. с понижением температуры скорость реакции возрастает). Например, полимеризация изобутилена под действием ВF3 проходит за несколько секунд при - 100°С, причем образуется полимер очень высокой молекулярной массы. Обычно принятый механизм катионной полимеризации включает образование комплексного соединения катализатора и сокатализатора, обладающего свойствами сильной кислоты:

На стадии инициирования протон присоединяется к молекуле мономера, и образуется ионная пара:

Этот ион затем реагирует со следующей молекулой мономера:

Тaким образом, на конце растущей цепи всегда находится карбокатион с противоанионом. Благодаря поляризации молекулы мономера обеспечивается регулярное присоединение звеньев по типу «голова к хвосту», так как другой тип присоединения здесь просто невозможен. Поэтому цепь полимера имеет химически регулярную структуру. Малая диэлектрическая постоянная среды способствует сохранению ионной пары в процессе роста цепи.

Обрыв цепи путем рекомбинации одноименно заряженных ионов невозможен и происходит благодаря перестройке ионной пары при уменьшении кинетической подвижности макроиона вследствие увеличения его размеров. При этом образуется нейтральная молекула полимера с двойной связью на конце и регенерируется исходный комплекс катализатор - сокатализатор:

Возможно также соединение сокатализатора и растущей цепи с образованием ковалентной связи и регенерацией катализатора:

Катализатор может многократно инициировать рост цепи полимера, поэтому уже малые его количества будут эффективны для проведения процесса полимеризации. Может происходить обрыв реакционной цепи с передачей ее на мономер:

Анионная полимеризация является одним из самых ранних освоенных в промышленности методов ионной полимеризации.

Наиболее активны в реакциях анионной полимеризации мономеры с электроноакцепторными заместителями, например акрилонитрил, стирол и др. Катализаторами при этом являются вещества, легко отдающие электроны, - щелочные металлы, их алкилы, гидриды, амиды, а также различные основания. Полимеризация стирола в среде жидкого аммиака в присутствии амида натрия протекает по следующей схеме:

(инициирование)

(рост цепи)

(передача цепи через растворитель)

Отрицательный заряд карбаниона и положительно заряженный противоион перемещаются вдоль цепи, а каждая молекула мономера внедряется между этими зарядами. В результате получается макромолекула с регулярным чередованием звеньев. Чем больше основность катализатора, тем активнее он катализирует анионную полимеризацию. Обрыв цепи при анионной полимеризации происходит обычно путем ее передачи на растворитель или мономер. Если инициаторами полимеризации являются щелочные металлы (Li, Na), то вначале образуются ион-радикалы мономера, которые, соединяясь друг с другом, дают начало кинетическим цепям полимеризации в обоих направлениях от активного центра:

Этот вид полимеризации дает возможность получения «живущих» полимеров, которые сохраняют на концах анионы в течение длительного времени и способны инициировать полимеризацию при дальнейшем добавлении мономера. При этом происходит выравнивание размеров отдельных макромолекул и образование монодисперсных полимеров.

Инициаторами анионной полимеризации служат нуклеофилы – амид-анион, алкоксид-анион, литий- и натрийорганические соединения. Пример – полимеризация акрилонитрила:

Механизм реакции

а) инициирование:

б) рост цепи:

в) обрыв цепи:

Анионная полимеризация характерна для мономеров, содержащих у двойной связи электроноакцепторные заместители – акрилонитрила, алкилакрилатов и др., а также стирола.

По анионному механизму полимеризуются также циклические мономеры – эпоксиды:

Механизм реакции

а) инициирование:

б) рост цепи:

в) обрыв цепи:

Координационная полимеризация

Инициирование происходит под действием катализаторов, открытых в 1953 г. К.Циглером и Дж.Натта, получившим за эту работу Нобелевскую премию в 1963 г.

Катализаторы Циглера-Натта представляют собой комплексы галогенидов переходных металлов с металлорганическими соединениями: TiCl 4 + Al(C 2 H 5) 3 .

Механизм реакции

Катализатор выполняет роль матрицы, на которой строится полимерная цепь. Это позволяет контролировать процесс в большей степени, чем в других видах полимеризации.

Поликонденсация

Поликонденсация – это последовательное соединение молекул мономеров в результате реакции функциональных групп. При этом выделяются низкомолекулярные соединения (чаще всего вода).

Например:

Примером поликонденсации является также образование полипептидов из аминокислот.

ПОНЯТИЕ О СТЕРЕОРЕГУЛЯРНОСТИ ПОЛИМЕРОВ

При полимеризации пропилена образуется полимер, у которого атомы, связанные с метильной группой, хиральны. Такой полимер может иметь различную пространственную структуру:

а) атактический полимер:

Образуется при радикальной полимеризации пропилена.

б) синдиотактический полимер:

в) изотактический полимер:

Образуется при полимеризации пропилена с катализатором Циглера-Натта.

Полимеризация сопряженных диенов

Сопряженные диены могут полимеризоваться, образуя цепи либо за счет 1,2-присоединения мономерных молекул, либо за счет 1,4-присоединения.

Полимерные цепи диенов в отличие от алкенов содержат двойные связи.

При 1,4-полимеризации двойные связи находятся в основной цепи, и заместители относительно них могут находиться в цис - или транс -положении:

Первоначально натуральный каучук получали из млечного сока гевеи бразильской (Hevea brasiliensis), в котором он содержится в количестве до 40-50%.

По химическому строению натуральный каучук представляет собой стереорегулярный цис -1,4-полиизопрен:

Пространственная структура такой цепи спиралеобразна. При механическом воздействии она сжимается подобно пружине, а затем снова разжимается. Этим объясняется исключительно высокая эластичность каучука.

Другой природной разновидностью полиизопрена является гуттаперча , выделяемая из сока деревьев семейства сапотовых, она имеет структуру транс -1,4-полиизопрена:

Выпрямленность изопреновых звеньев придает цепям стержнеобразную пространственную структуру, причем они могут плотно укладываться одна вдоль другой. Поэтому, в отличие от липкого и эластичного каучука, гуттаперча при комнатной температуре имеет твердую и хрупкую консистенцию.

Сырой каучук представляет собой очень эластичную и непрочную клейкую массу. Он применяется, в частности, для изготовления лейкопластырей.

При нагревании каучука с серой – вулканизации – происходит частичная сшивка полимерных цепей, и получается эластичный и гораздо более прочный на разрыв материал – резина :

При нагревании с большим количеством серы каучук образует твердый материал – эбонит .

Каучук и получаемые из него материалы играют огромную роль в технике и в быту. Поэтому очень скоро натуральный каучук, выделяемый из растительного сырья, перестал удовлетворять технические потребности, и перед химиками стал вопрос о получении синтетического каучука.

Первый синтетический каучук – полибудиен – в промышленном масштабе был получен в 1932 г. С.В.Лебедевым, разработавшим метод получения бутадиена из этилового спирта:

В 1936 г. в США был получен промышленный синтетический хлоропреновый каучук:

Хлоропреновый каучук по некоторым свойствам уступает природному, но более устойчив к воздействию нефти и масел.

Сополимер бутадиена и стирола, созданный в Германии в 1928 г. – экономически выгодный заменитель натурального каучука:

Из сополимера бутадиена и акрилонитрила получают резиновые изделия с высокой стойкостью к действию бензина, керосина и масел:

ПОЛИМЕРЫ В ТЕХНИКЕ И ФАРМАЦИИ

Лекция 5. Катионная и анионная полимеризация.
Отличия от радикальной полимеризации:

  • растущая цепь является не свободным радикалом , а катионом или анионом;

  • катализатор не расходуется в процессе полимеризации и не входит в состав полимера.
В зависимости от знака макроиона различают катионную и анионную полимеризацию. При катионной полимеризации:

  • на конце растущей цепи находится + заряд, который возникает в процессе инициирования и исчезает при обрыве или передаче цепи.
При анионной полимеризации :

  • заряд растущего макроиона – (отрицательный).

Так как вместо инициаторов при ионной полимеризации используются ионные инициаторы – катализаторы, ионную полимеризацию называют каталитической .


Катионная полимеризация
1877 г А.М.Бутлеров осуществил полимеризацию изобутилена в присутствии серной кислоты.

Каталитическая полимеризация протекает в присутствии кислот (HCl, H 3 PO 4 , H 2 SO 4) и катализаторов Фриделя-Крафтса (AlCl 3 , BF 3 , TiCl 4 , SnCl 4 и др.). Эти вещества являются электроноакцепторными (электрофильными) и, присоединяя мономер , они образуют ион карбония.

Схематически процесс можно изобразить следующим образом:

Последующее взаимодействие иона карбония с молекулами мономера представляет собой реакцию роста цепи, причем растущая цепь сама является катионом с увеличивающейся в процессе реакции молекулярной массой. Реакция роста цепи сопровождается передачей по цепи + заряда.

Обрыв цепи связан с тощеплением протона.

Можно получать полимеры с высокой молекулярной массой.

Большое значение имеют:


  • природа катализатора

  • нуклеофильность мономера.
Пример: полимеризация изобутилена в присутствии BF 3 протекает при низких температурах практически мгновенно и со взрывом; в присутствии Al F 3 – в течение нескольких минут; в присутствии TiCl 3 – в течение нескольких часов.

Особенности, отличающие катионную полимеризацию от радикальной:


  • Молекулярная масса полимера снижается при наличии в реакционной среде небольших добавок воды и других ионизирующихся веществ и часто не зависит от концентрации мономера.

  • Полимеризация значительно ускоряется при применении наряду с катализатором небольших добавок воды, кислот и других доноров протонов (сокатализаторов). Максимальная скорость достигается при определенном соотношении катализатор:сокатализатор. Эффект ускорения растет с увеличением кислотности сокатализатора. Добавка сокатализатора в количестве, не превышающем стехиометрического соотношения с катализатором, увеличивает скорость полимеризации и уменьшает молекулярную массу полимера. Увеличение содержания сокатализатора сверх стехиометрического не сказывается на скорости полимеризации, т. к. участвуют в реакции только те молекулы , которые связаны с катализатором.Роль сокатализатора зависит от характера среды. В полярном растворителе HCl ускоряет процесс полимеризации, т.к. образующийся комплекс с катализатором диссоциирует с выделением ионов Н + , возбуждающих полимеризацию. В неполярном растворителе, например, в четыреххлористом углероде (дипольный момент равен 0). Диссоциация комплекса мала и HCl только связывает катализатор, уменьшая скорость полимеризации.

  • На реакцию существенное влияние оказывает диэлектрическая постоянная среды.Скорость каталитической полимеризации зависит от полярности среды. С увеличением полярности увеличивается скорость полимеризации и увеличивается молекулярная масса полимера.
Пример. Влияние диэлектрической проницаемости растворителя на скорость полимеризации метилстирола и молекулярную массу полистирола.

  • Энергия активации катионной полимеризации всегда меньше 63 кДж/моль. В случае радикальной полимеризации она превышает эту величину. Благодаря этому катионная полимеризация протеакет, как правило , с очень большой скоростью.
При взаимодействии сокатализатора с молекулой катализатора образуется комплекс:

который протонирует мономер с образованием активного центра – иона карбония:

Рост цепи заключается в присоединении молекул мономера к иону крбония с последующей его регенерацией.

Роль сокатализаторов могут играть некоторые растворители, а также трет-алкилхлорид.

Пример: стирол не полимеризуется в водной среде в присутствии SnCl 4 . Добавка хлористого трет-бутила приводит к быстрой полимеризации:

При взаимодействи хлористого трет-бутила с хлоридом олова образуется комплекс, который при взаимодействии с мономером дает ион карбония.

Обрыв молекулярной цепи может произойти:


  • в результате передачи цепи на мономер:

Кинетическая цепь продолжается.


  • при регенерации каталитического комплекса:

Экспериментально показано, что скорость полимеризации (например, стирола в присутствии хлорида олова) прямо пропорциональна концентрации катализатора , а средняя степень полимеризации(п) не зависит от концентрации катализатора и прямо пропорциональна концентрации мономера.


Средняя степень полимеризации:

Т. е. средняя степень полимеризации не зависит от концентрации катализатора и прямо пропорциональна концентрации мономера.

Суммарная скорость полимеризации может быть определена из уравнения:

При условии, что[m] = const ,т.е. суммарная скорость катионной полимеризации прямо пропорциональна концентрации катализатора.

Ионная полимеризация очень чувствительна к изменению условий реакции, характеру среды. Влиянию примесей. Поэтому часто реакция протекает сложнее. Чем показано в приведенных схемах.
Анионная полимеризация.
При анионной полимеризации возникновение активного центра связано с образованием карбаниона. Условно ее подразделяют на анионную и анионно-координационную. К последней относят полимеризацию в присутствии металлорганических соединений.
Склонность к анионной полимеризации наиболее ярко выражена у мономеров с электроноакцепторными заместителями, которые вызывают поляризацию двойной связи, усиливая электрофильность ее и стабилизируя образующиеся анионы.
Катализаторы – вещества, являющиеся донорами электронов (основания. Щелочные металлы , ихгидриды и амиды, металлорганические соединения)

Более электрофильные мономеры требуют для инициирования менее основных катализаторов с более низкой электронодонорной способностью.


Пример механизма анионной полимеризации:
Полимеризация непредельных соединений в присутствии амида калия в среде жидкого аммиака.

Установлено, что при полимеризации стирола в присутствии амида калия в жидком аммиаке каждая образующаяся макромолекула полимера содержит группу NH 2 . При этом молекулярная масса полимера не зависит от концентрации катализатора и прямо пропорциональна концентрации мономера. С повышением температуры молекулярная масса полимера уменьшается.

Скорость полимеризации пропорциональна квадрату концентрации мономера и корню квадратному из концентрации катализатора.
Обрыв цепи при анионной полимеризации происходит:


  • путем присоединения Н + или другой положительной частицы;

  • путем передачи цепи на растворитель.

Катализатор не расходуется в результате реакции.
С амидами полимеризуются: акрилонитрил, метилметакрилат, метакрилонитрил.

Иначе идет полимеризация в присутствии металлорганических катализаторов R-Me (бутиллитий, этилнатрий, трифенилметилнатрий).

Me в комплеке связан с мономером координационной связью – полимеризацию поэтому называют анионно-координационной. Особенность такой полимеризации – бифункциональное присоединение мономера (при катализе амидами металлов бифункциональный мономер присоединяется по одной функции).

Чем более полярна связь металл-углерод в катализаторе , тем больше механизм полимеризации приближается к чисто ионному. Самая низкая полярность связи Li – C.

а) полимеризация бутадиена в присутствии органических соединений натрия, калия (преобладают 1,2-структуры)

б) в присутствии литий-органических соединений (растворитель-углеводород) на 90% преобладают структуры 1,4. получают стереорегулярный цис-1,4-полибутадиен

В среде полярных растворителей влияние катализатора ослабляется, т.к. образуется комплекс растворитель-катализатор, а не катализатор-мономер. И если добавить, например, спирт,фенол, то в процессе полимеризации получим полибутадиен с преобладанием структуры 1,2.


Обрыв цепи в отсутствие примесей, являющихся донорами протонов и способных к обрыву цепи , во многих сучаях может не быть!!!

Реакция идет до исчерпывания мономера. В результате этого образуются макромолекулы, содержащие активные центры и способные инициировать полимеризацию. Их называют «живыми» полимерами. При добавлении к такому полимеру новой порции мономера его молекулярная масса возрастает. Если добавить другой мономер, то образуется блок-сополимер.

При полимеризации с металлорганическими соединениями и щелочными металлами в отсутствие примесей, способных вызвать обрыв цепи., можно получить полимеры с очень большой молекулярной массой. В идеале молекулярная масса при этих условиях определяется соотношением мономер:катализатор
Выводы:


  1. Т.к. при анионной полимеризации самопроизвольного обрыва цепи не происходит, то можно получить монодисперсные по молекулярной массе полимеры. Основные условия для этого:

  • полное отсутствие примесей:

  • хорошее перемешивание (скорость образования активных центров велика).

2. В «живой» полимер для обрыва цепи можно вводить различные соединения и получать олигомеры с различными концевыми группами.

Процесс анионной полимеризации протекает с участием веществ основного характера: щелочные металлы; производные щелочных металлов (алкоголяты, амиды, Ме-органические соединения); чаще всего натрийнафталиновый комплекс.

Механизм роста цепи по Li-органическому соединению при формировании микроструктуры при анионной полимеризации диеновых углеводородов:

Из схемы реакции видно, что осуществляется предварительная ориентация молекул мономера и внедрение ее по месту поляризованной связи.

Обрыв цепи в реакциях анионной полимеризации может протекать по следующим механизмам дезактивации активных центров:

  1. перенос дегидрированного Н с конца растущей цепи

~CH 2 -C - H-R + Me + → ~CH=C - H-R + MeH

  1. захват протона растущей цепи и ограничение роста цепи наблюдается при полимеризации в жидком аммиаке или растворителе, способном расщеплять протон.
  2. прекращение растущего макроиона за счет его превращения в ион с пониженной реакционной способностью возможно вследствие изомеризации концевой группы

~CH 2 -C - CH 3 -COOCH 3 Na + → ~CH 2 -CCH 3 =C-O - OCH 3 Na +

При анионной полимеризации процесс может идти избирательно и формироваться микроструктура. Например, изопрен при полимеризации на щелочном металле в растворителе пентане.

Механизм полимеризации в присутствии амидов щелочных металлов.

Инициирование

KNH 2 → NH 3 K + + N - H 2

N - H 2 + CH 2 =CH-R → NH 2 -CH 2 -C - H-RK +

Рост цепи

NH 2 -CH 2 C - HRK + → CH 2 CHR NH 2 -CH 2 CHR-CH 2 -C - HR

Обрыв цепи

~CH 2 -C - HRK + + NH 3 → ~CH 2 -CH 2 R +N - H 2 K +

Механизм для металлоорганических катализаторов.

  1. Инициирование

MeR ’ + CH 2 =CH-R → R ’ -CH 2 -C - HRMe +

Рост цепи

R ’ -CH 2 -C - HRMe + → CH 2 =CHR R ’ CH 2 -CHR-CH 2 -C - HRMe +

Обрыв цепи

~CH 2 -C - HRMe + → ~CH=CHR + MeH


Лекция №6

Анионно-координационная полимеризация: полимеризация диенов, полимеризация на комплексных катализаторах Циглера-Натта на П-аллильных комплексах; получение стереорегулярных полимеров.

Ионно-координационная полимеризация отличается от ионной тем, что акту присоединения мономера предшествует его координация на активном центре или катализаторе. Координация мономера может иметь место как при анионной, так и при катионной полимеризации, но для анионной полимеризации она более характерна.



Цифры в названных изомерных звеньях обозначают номер атома углерода,

входящего в основную цепь молекулы изопрена. Впервые полимеризацию изопрена на металлическом Na в 1932 году осуществил Лебедев. Впоследствии изопрен полимеризуют на Li-органических соединениях в среде углеводорода. Координация мономера происходит на полярном, но недиссоциированном активном центре - C – Li - в результате чего мономерное звено принимает конфигурацию, соответствующую

1,4 цис-структуре

Добавление всего лишь нескольких процентов электронодонорных соединений (эфир, тетрагидрофуран, алкиламин) резко изменяет микроструктуру образующегося полиизопрена – преобладающей становится 1,4-транс (80-90%) и 3,4-структура (10-20%). Электоронодонорные соединение поляризует связь C -Li до разделения на ионы

В этом случае микроструктуру цепи полимера определяет координация иона Li с концевым звеном макро-иона, которое имеет аллильную структуру. В аллильной структуре π-электроны делокализованы и поэтому два крайних атома углерода по электронной плотности эквивалентны. Для карбоаниона это выражается следующим образом:

С учётом этого координацию иона Li с конечным звеном цепи изопрена, несущим заряд можно представить циклической структурой:

Мономер может присоединяться как к 1-му, так и к 3-му атому С, что приводит к 1,4-транс или 3,4-структуре.

В 1955 году немецкий химик Циглер предложил каталитическую систему, состоящую из 3-этилалюминия и хлорида титана ((С 2 Н 5) Аl+ТiСl 4) для синтеза полиэтилена в мягких условиях (50-80 С и р=1МПа). Итальянский химик Натта применил эту систему для синтеза полиэтилена и полистирола, и объяснил механизм действия этих катализаторов. В настоящее время группе катализаторов Циглера-Натта относят каталитические системы, образующиеся при взаимодействии органических соединений непереходных элементов (1-3 гр.) и солей переходных элементов (4-8 гр.).Известны гетерогенные и гомогенные катализаторы Циглера-Натта. На первых получают в основном изотактические полимеры, а на вторых изо- и синдиотактические. Детальный механизм полимеризации олефинов на катализаторах Циглера-Натта до сих пор обсуждается, однако установлено, что на первой стадии происходит алкилирование ТiСl 4 3-этилалюминием и далее присоединение мономера идёт по лабильной связи ТiС.

Существует 2 точки зрения:

Согласно первой на поверхности кристаллического ТiСl 4 образуется активный центр Тi 3+ , на котором мономер координируется, а затем внедряется по связи Тi-С.

Координация способствует ослаблению связи Тi–С, а также обеспечивает присоединение мономера в определённом пространственном положении.

Согласно второй точке зрения механизм взаимодействия предусматривает участие R Аl в активном центре, представляющий собой координационный комплекс, в котором атом Тi образует 3-х центровую 2-х электронную связь с аллильной группой, а атом Аl – 2-х центровую координационную связь с атомом Сl хлорида титана (мостиковые связи).

В реакции инициирования мономер координируется на положительно поляризованном атоме Тi, образуя π-комплекс, который затем переходит в σ-комплекс, в результате этих превращений мономер внедряется по связи Ti-C и структура активного центра последовательно воспроизводится.

Последующие акты роста протекают аналогично. Из схемы видно, что на активном конце цепи находится отрицательный заряд, поэтому полимеризацию на катализаторах

Циглера-Натта относят к анионно-координационной.

Обрыв цепи при полимеризации на этих катализаторах происходит в результате тех же реакций, что и при анионной полимеризации, в частности в результате переноса гидрид-иона на мономер или противоиона. В настоящее время методом анионно-координационной полимеризации получают стереорегулярные каучуки, полиолефины.


Лекция №7

Сополимеризация, ее значение как способа модификации полимеров. Типы сополимеризации: идеальная, блоксополимеризация, привитая. Состав сополимера. Закономерности процесса сополимеризации.

Сополимеризация - совместная полимеризация двух или более мономеров. Она широко используется в практике, так как является простым и очень эффективным методом модификации свойств крупнотоннажных полимеров. Наиболее изучена двухкомпонентная или бинарная сополимеризация. При сополимеризации добиваются лучших свойств каждого из гомополимеров.

Например, полиэтилен обладает высокой эластичностью, морозостойкостью, но плохими адгезионными свойствами. Введение в макромолекулу полиэтилена до 30% звеньев винилацетата придает полимеру свойство клея-расплава.

Для повышения морозостойкости полипропилена в макромолекулу вводят звенья бутил - каучука (температура хрупкости падает до -40 0).

Сополимеризация заключается в получении ВМС из смеси двух или более мономеров, которые называются сомономерами. Макромолекулы сополимеров состоят из звеньев всех мономеров, присутствующих в исходной реакционной смеси. Каждый сомономер придает полимеру свои свойства, при этом свойства полимера не являются суммой отдельных гомополимеров. Закономерности сополимеризации сложнее, чем гомополимеризации. Если при гомополимеризации имеется один тип растущего радикала и один мономер, то при бинарной сополимеризации существует 4 типа растущих радикалов. Например, если 2 мономера А и В взаимодействуют со свободными радикалами R · , возникающие при распаде инициатора, образуются первичные R · , один из которых имеет концевое звено А, а второй- В.

R · +А R А ·

R · +В R В ·

R А · и R В · могут реагировать с А и В:

А+ RА А · (К АА)

В+ RА В · (К АВ)

А+ RВ А · (К ВА)

В+ RВ В · (К ВВ)

Отношение константы скорости реакции каждого R · со “своим” мономером к константе скорости реакции с “чужим ” мономерам называют константами сополимеризации, или относительными активностями r мономеров.

r A = К АА / К АВ

r B = К ВВ / К ВА

Величины r A и r B определяют состав макромолекул сополимера в большей мере, чем соотношение мономеров в исходной реакционной смеси. Если относительные активности сомономеров приблизительно равны 1, то каждый R · с равной вероятностью взаимодействует как со своим, так и с чужим мономером. Присоединение мономера в цепь случайное и образуется статистический сополимер. Это идеальная сополимеризация. Реакции сополимеризации могут протекать по радикальному и ионному механизмам. При ионной сополимеризации на константы оказывают влияние природа катализатора и растворителя, поэтому полимеры, получаемые из одних и тех же мономеров, но в присутствии разных катализаторов, имеют разный химический состав. Например, сополимер стирола и акрилонитрила, синтезированный из эквимолекулярной смеси мономеров в присутствии перекиси бензоила, содержит 58% звеньев стирола, а при анионной сополимеризации на катализаторе С 6 Н 5 МgВr- 1%, а при катионной полимеризации в присутствии SnCl 4 -99%.

В практическом отношении интересны блок- и привитые сополимеры. В их макромолекулах существуют участки большой протяженности и звеньев каждого сополимера. Блок-сополимеры получают разными методами. Во-первых, при анионной полимеризации одного мономера возникшие «живые» цепи могут инициировать полимеризацию другого мономера:

ААА - + n В = - ААА(В) n-1 В -

Во-вторых, при интенсивном механическом воздействии на смесь разных полимеров происходит деструбция цепей и образующихся макрорадикалов. Макрорадикалы, взаимодействуя между собой, формируют блок-сополимеры. Блок-сополимеры могут образовываться также из олигомеров за счет взаимодействия концевых функциональных групп. Привитые сополимеры получают взаимодействием мономера с полимером и реже взаимодействием двух разных полимеров. Так как в этих процессах используется реакция передачи цепи с превращением полимерных молекул в макрорадикалы, в состав макромолекул вводят атомы или группы с повышенной подвижностью (Вr,что ускоряет реакцию передачи цепи). Если в реакционной среде находится полимер на основе мономера СН 2 =СН-X, СН 2 =СН-Y, то процесс образования привитого сополимера протекает сложным образом. Сначала возникает серединный макрорадикал:

Затем этот макрорадикал инициирует полимеризацию мономера с образованием боковых ветвей:

Получение блок- и привитых сополимеров всегда сопровождается образованием гопополимера из присутствующего в зоне реакции мономера.

Состав сополимера.

Состав сополимера не равен составу исходной мономерной смеси. Зависимость между ними может быть установлена кинетическими и статистическими методами.

1. Кинетический метод. В большинстве случаев реакционная активность центров на концах цепей определяется лишь природой концевого звена, поэтому при выводе уравнения состава учитывают четыре реакции роста цепи между мономерами А и В и растущими активными цепями, а также константу сополимеризации. Дифференциальное уравнение состава сополимера выглядит так:

d[A]/d[B]=[A](r A [A]+[B])/[B](r B +[A])

Уравнение связывает текущие или мгновенные концентрации мономеров в сополимеры и в мономерные смеси через величины относительных активностей мономеров. Графической формой этого уравнения являются кривые состава сополимера, вид которых однозначно определяется r A и r B .

1- состав сополимера равен составу мономерной смеси r A =r B =1 (вид идеальной сополимеризации), распределение звеньев статистическое.

2- r A >1, r B <1

3- r A <1, r B <1

4- r A <1, r B >1. Сополимер обогащен более активным мономером во всей области состава.

5- r A → 0, r B →0. В сополимере строгое чередование мономерных звеньев при любом составе мономерной смеси. Образуется сополимер состава 1:1.

6- r A → 0, r B <1. Для сополимеров также характерно чередование мономерных звеньев, но оно не является регулярным.

Просмотров