Что такое поляризация света в физике. Поляризованный свет в природе. Применение поляризации света в истории и в повседневной жизни

Направлению распространения волны;

  • Круговую поляризацию - правую либо левую, в зависимости от направления вращения вектора индукции;
  • Эллиптическую поляризацию - случай, промежуточный между круговой и линейными поляризациями.
  • Некогерентное излучение может не быть поляризованным, либо быть полностью или частично поляризованным любым из указанных способов. В этом случае понятие поляризации понимается статистически.

    При теоретическом рассмотрении поляризации волна полагается распространяющейся горизонтально . Тогда можно говорить о вертикальной и горизонтальной линейных поляризациях волны.

    Линейная Круговая Эллиптическая


    Теория явления

    Электромагнитная волна может быть разложена (как теоретически, так и практически) на две поляризованные составляющие, например поляризованные вертикально и горизонтально. Возможны другие разложения, например по иной паре взаимно перпендикулярных направлений, или же на две составляющие, имеющие левую и правую круговую поляризацию. При попытке разложить линейно поляризованную волну по круговым поляризациям (или наоборот) возникнут две составляющие половинной интенсивности.

    Как с квантовой, так и с классической точки зрения, поляризация может быть описана двумерным комплексным вектором (вектором Джонса ). Поляризация фотона является одной из реализаций q-бита .

    Линейную поляризацию имеет обычно излучение антенн .

    По изменению поляризации света при отражении от поверхности можно судить о структуре поверхности, оптических постоянных, толщине образца.

    Если рассеянный свет поляризовать, то, используя поляризационный фильтр с иной поляризацией, можно ограничивать прохождение света. Интенсивность света прошедшего через поляризаторы подчиняется закону Малюса . На этом принципе работают жидкокристаллические экраны .

    Некоторые живые существа, например пчёлы, способны различать линейную поляризацию света, что даёт им дополнительные возможности для ориентации в пространстве. Обнаружено, что некоторые животные, например креветка-богомол павлиновая способны различать циркулярно-поляризованный свет, то есть свет с круговой поляризацией.

    История открытия

    Открытию поляризованных световых волн предшествовали работы многих учёных. В 1669 г. датский учёный Э. Бартолин сообщил о своих опытах с кристаллами известкового шпата (CaCO3), чаще всего имеющими форму правильного ромбоэдра, которые привозили возвращающиеся из Исландии моряки. Он с удивлением обнаружил, что луч света при прохождении сквозь кристалл расщепляется на два луча (называемых теперь обыкновенным и необыкновенным). Бартолин провёл тщательные исследования обнаруженного им явления двойного лучепреломления, однако объяснения ему дать не смог. Через двадцать лет после опытов Э. Бартолина его открытие привлекло внимание нидерландского учёного Х. Гюйгенса. Он сам начал исследовать свойства кристаллов исландского шпата и дал объяснение явлению двойного лучепреломления на основе своей волновой теории света. При этом он ввёл важное понятие оптической оси кристалла, при вращении вокруг которой отсутствует анизотропия свойств кристалла, т. е. их зависимость от направления (конечно, такой осью обладают далеко не все кристаллы). В своих опытах Гюйгенс пошёл дальше Бартолина, пропуская оба луча, вышедшие из кристалла исландского шпата, сквозь второй такой же кристалл. Оказалось, что если оптические оси обоих кристаллов параллельны, то дальнейшего разложения этих лучей уже не происходит. Если же второй ромбоэдр повернуть на 180 градусов вокруг направления распространения обыкновенного луча, то при прохождении через второй кристалл необыкновенный луч претерпевает сдвиг в направлении, противоположном сдвигу в первом кристалле, и из такой системы оба луча выйдут соединёнными в один пучок. Выяснилось также, что в зависимости от величины угла между оптическими осями кристаллов изменяется интенсивность обыкновенного и необыкновенного лучей. Эти исследования вплотную подвели Гюйгенса к открытию явления поляризации света, однако решающего шага он сделать не смог, поскольку световые волны в его теории предполагались продольными. Для объяснения опытов Х. Гюйгенса И. Ньютон, придерживавшийся корпускулярной теории света, выдвинул идею об отсутствии осевой симметрии светового луча и этим сделал важный шаг к пониманию поляризации света. В 1808 г. французский физик Э. Малюс, глядя сквозь кусок исландского шпата на блестевшие в лучах заходящего солнца окна Люксембургского дворца в Париже, к своему удивлению заметил, что при определённом положении кристалла было видно только одно изображение. На основании этого и других опытов и опираясь на корпускулярную теорию света Ньютона, он предположил, что корпускулы в солнечном свете ориентированы беспорядочно, но после отражения от какой-либо поверхности или прохождения сквозь анизотропный кристалл они приобретают определённую ориентацию. Такой «упорядоченный» свет он назвал поляризованным.

    Параметры Стокса

    Изображение поляризации языком параметров Стокса на сфере Пуанкаре

    В общем случае плоская монохроматическая волна имеет правую или левую эллиптическую поляризацию. Полная характеристика эллипса даётся тремя параметрами, например,полудлинами сторон прямоугольника, в который вписан эллипс поляризации A 1 , A 2 и разностью фаз φ , либо полуосями эллипса a , b и углом ψ между осью x и большой осью эллипса. Удобно описывать эллиптически поляризованную волну на основе параметров Стокса :

    , ,

    Независимыми являются только три из них, ибо справедливо тождество:

    Если ввести вспомогательный угол χ , определяемый выражением (знак соответствует правой, а - левой поляризации), то можно получить следующие выражения для параметров Стокса:

    На основе этих формул можно характеризовать поляризацию световой волны наглядным геометрическим способом. При этом параметры Стокса , , интерпретируются, как декартовы координаты точки, лежащей на поверхности сферы радиуса . Углы и имеют смысл сферических угловых координат этой точки. Такое геометрическое представление предложил Пуанкаре , поэтому эта сфера называется сферой Пуанкаре.

    Наряду с , , используют также нормированные параметры Стокса , , . Для поляризованного света .

    См. также

    Литература

    • Ахманов С.А., Никитин С.Ю. - Физическая оптика, 2 издание, M. - 2004.
    • Борн М., Вольф Э. - Основы оптики, 2 издание, исправленное, пер. с англ.,М. - 1973

    Примечания


    Wikimedia Foundation . 2010 .

    • Поляризация волны
    • Поляризация фотонов

    Смотреть что такое "Поляризация света" в других словарях:

      ПОЛЯРИЗАЦИЯ СВЕТА - физ. характеристика оптич. излучения, описывающая поперечную анизотропию световых волн, т. е. неэквивалентность разл. направлений в плоскости, перпендикулярной световому лучу. Первые указания на поперечную анизотропию светового луча были получены … Физическая энциклопедия

      ПОЛЯРИЗАЦИЯ СВЕТА Современная энциклопедия

      Поляризация света - ПОЛЯРИЗАЦИЯ СВЕТА, упорядоченность в ориентации вектора напряженности электрического E и магнитного H полей световой волны в плоскости, перпендикулярной распространению света. Различают линейную поляризацию света, когда E сохраняет постоянные… … Иллюстрированный энциклопедический словарь

      поляризация света - поляризация Свойство света, характеризующееся пространственно временной упорядоченностью ориентации магнитного и электрического векторов. Примечания 1. В зависимости от видов упорядоченности различают: линейную поляризацию, эллиптическую… …

      ПОЛЯРИЗАЦИЯ СВЕТА - (лат. от polus). Свойство лучей света, которые, будучи отраженными или преломленными, утрачивают способность отражаться или преломляться вновь, по известным направлениям. Словарь иностранных слов, вошедших в состав русского языка. Чудинов А.Н.,… … Словарь иностранных слов русского языка

      ПОЛЯРИЗАЦИЯ СВЕТА - упорядоченность в ориентации векторов напряженностей электрических E и магнитных H полей световой волны в плоскости, перпендикулярной световому лучу. Различают линейную поляризацию света, когда E сохраняет постоянное направление (плоскостью… … Большой Энциклопедический словарь

      поляризация [света] - Упорядоченность ориентации вектора электромагнитного поля световой волны в плоскости, перпендикулярной направлению распространения светового луча; принцип П. используется в конструкции поляризационного микроскопа [Арефьев В.А., Лисовенко Л.А.… … Справочник технического переводчика

      поляризация света - упорядоченность в ориентации векторов напряжённостей электрических E и магнитных Н полей световой волны в плоскости, перпендикулярной световому лучу. Различают линейную поляризацию света, когда Е сохраняет постоянное направление (плоскостью… … Энциклопедический словарь

      поляризация [света] - polarization поляризация [света]. Упорядоченность ориентации вектора электромагнитного поля световой волны в плоскости, перпендикулярной направлению распространения светового луча; принцип П. используется в конструкции поляризационного микроскопа … Молекулярная биология и генетика. Толковый словарь.

      поляризация света - šviesos poliarizacija statusas T sritis fizika atitikmenys: angl. polarization of light vok. Lichtpolarisation, f rus. поляризация света, f pranc. polarisation de la lumière, f … Fizikos terminų žodynas


    Поляризация света

    Лекция 3

    Мы знаем, что свет – это электромагнитная волна, для которой изменение векторов и , происходящие с частотой во взаимно плоскости, записывается так:

    Физиологическое действие на глаз оказывает вектор . Видимая область длин волн: (0,38 ÷ 0,760) мкм или (0,38 ÷ 0,76)·10 -6 м или (400 ÷ 760) нм. Наибольшая чувствительность глаза для λ = 550 мкм (зелёный свет).

    Вспомним, что поперечными волнами называются такие, в которых колебания совершаются в направлении их распространению. Электромагнитные волны – поперечны .

    Пусть у нас есть источник света – лампа накаливания. Свет представляет собой суммарное электромагнитное излучение множества атомов. Излучаемые лампой волны будут иметь хаотичные в пространстве, быстро сменяющее друг друга направленная для вектора (соответственно и для ). Такое излучение представляет собой естественный свет .

    Вспомним результат сложения двух взаимно перпендикулярных колебаний:

    Разность фаз

    При сложении двух гармонических взаимно-перпендикулярных колебаний одинаковой частоты в зависимости от разности фаз конец результирующего вектора может совершать колебания в одной плоскости или совершать движение по эллипсу (в частном случае – по окружности ).

    Линейная поляризация Эллиптическая поляризация (правая, левая)

    Эллиптическая поляризация (правая, левая) Круговая поляризация (правая, левая) a = b

    Итак, при сложении 2-х когерентных плоскопараллельных волн результирующая волна может оказаться линейно-поляризованной, эллиптически-поляризованной и круго-поляризованной. Отсюда название поляризации. Свет (световой луч), в котором колебания светового вектора каким-то образом упорядочены, называются поляризованным . Плоскостью поляризации называется плоскость параллельная колебаниям вектора . В дальнейшем, всегда будем говорить о плоскости колебания вектора , поскольку физиологическое действие на глаз человека оказывает именно вектор (интенсивность света ). Если в световом луче колебания всех векторов совершаются только в какой-то определённой плоскости, то такую поперечную волну называют плоско-поляризованной или линейно-поляризованной .

    В плоскости поляризации все вектора светового луча имеют эту плоскость колебаний, r – направление распространения светового луча.

    Для обнаружения и анализа линейно-поляризованного света служат пластинки, вырезанные определённым образом из кристаллов турмалина. Как выяснилось, на опыте, они обладают способностью пропускать световые колебания только определённого направления вектора .



    Устройства, с помощью которых из естественного света получают поляризованный, называется поляризаторами , а устройства, с помощью которых обнаруживается и исследуется поляризованный свет – анализаторами . Общее название поляризатора и анализатора – поляроиды . Следовательно, пластинки турмалина могут быть использованы как в качестве поляризаторов, так и анализаторов. Естественный свет можно представить в виде 2-х пучков света одинаковой интенсивности, но поляризованных в 2-х взаимно направлениях.

    Цели:

    Образовательные:

    1. Расширить представление об естественном свете.
    2. Дать определение явления поляризации света.
    3. Показать учащимся значимость поперечных свойств света для доказательства электромагнитной природы света.

    Воспитательные: Воспитание мировоззренческого мышления.

    Развивающие: Развитие самостоятельности мышления, интеллекта, умение систематизировать материал, формулировать выводы по изученному материалу.

    Демонстрации:

    Основное содержание материала: Определение явления поляризации. Понятие естественного и поляризованного света. Поперечность световых волн. Доказательство электромагнитной природы света. Поляроиды, их применение, поляризатор.

    План.

    1. История открытия поляризации.
    2. Понятие об естественном и о линейно-поляризованном свете.
    3. Значение поляризации для доказательства электромагнитной природы света.
    4. Аналогия колебаний световой волны с механическими колебаниями.
    5. Поляризация света при отражении и преломлении.
    6. Оптическая активность вещества и вращение плоскости поляризации.
    7. Применение явления поляризации.
    8. Подведение итогов.

    Ход урока

    На доске записывается тема лекции, объявляется цель, проговаривается структура изложения материала. На доске записаны контрольные вопросы, на которые учащиеся должны ответить после изложения материала учителем. Поляризация – греч.«polos», лат. «polus» – конец оси, полюс.

    Учитель: Понятие поляризации света было введено в оптику английским ученым Исааком Ньютоном в 1706 г. и объяснено Джеймсом Клерком Максвеллом. На этапе развития волновой природы света, природа световых волн была неизвестна, хотя накапливались экспериментальные факты в пользу поперечности электромагнитных волн.

    Учитель. Выполняя домашнее задание, надо было повторить понятия: электромагнитная волна, поперечная волна, гипотеза Максвелла об электромагнитных волнах, волновой цуг, естественный свет, анизотропия кристалла.

    Что представляет собой электромагнитная волна?

    Ученик. Электромагнитная волна представляет собой взаимосвязанные колебания векторов напряженности электрического и магнитного полей, перпендикулярных друг к другу и направлению распространения волны.

    Что такое поперечная волна?

    Поперечная волна – это волна, в которой направление колебаний частиц перпендикулярны направлению распространения волны.

    Что представляют собой электромагнитные волны с точки зрения гипотезы Максвелла?

    По гипотезе Максвелла электромагнитные волны распространяются в пространстве с конечной скоростью – скоростью света с=3 и являются поперечными.

    Что такое волновой цуг?

    Волновой цуг – волна, излучаемая отдельным атомом в течение времени, в котором атом находится в возбужденном состоянии: t=с.

    Учитель . Что такое естественный свет?

    Ученик. Естественный свет представляет собой суммарное электромагнитное излучение множества атомов, поэтому световая волна – это набор волновых цугов с беспорядочно меняющейся фазой.

    Свет, у которого световой вектор колеблется беспорядочно одновременно во всех направлениях, перпендикулярных лучу, называется естественным.

    Что такое анизотропия кристалла?

    Анизотропия – это зависимость физических свойств кристалла от направления.

    Учитель.

    Впервые опыты по поляризации света с исландским шпатом были поставлены голландским ученым Х. Гюйгенсом в 1690 г. Пропуская световой луч сквозь исландский шпат, Гюйгенс открывает поперечную анизотропию светового луча, обусловленную анизотропией свойств кристалла. Это явление было названо двойным лучепреломлением. Если кристалл поворачивать относительно направления первоначального луча, то поворачиваются оба луча после выхода из кристалла. В 1809 году французский инженер Э. Малюс открыл закон, названный его именем. В опытах Малюса свет последовательно пропускался через две одинаковые пластинки из турмалина. Свет направляпся перпендикулярно поверхности кристалла турмалина, вырезанного параллельно оптической оси. При вращении кристалла вокруг оси луча, изменение интенсивности светового луча не происходит. Если на пути луча поставить второй, идентичный первому кристалл турмалина, то интенсивность прошедшего сквозь эти пластинки света, меняется в зависимости от угла α между осями кристаллов согласно закону Малюса:

    Интенсивность прошедшего света оказалась прямо пропорциональной φ. В продольной волне все направления в плоскости, перпендикулярной лучу, равноправны, поэтому ни закон Малюса, ни двойное лучепреломление не смогли объяснить данное явление с точки зрения продольных волн.

    Учитель. На пути солнечного света можно поставить специальное устройство – поляризатор, выделяющее одно из всех направлений колебаний вектора . Свет, у которого направление колебаний вектора строго фиксировано, называется линейно-поляризованным или плоско-поляризованным.

    Под поляризацией света понимают выделение из естественного света световых колебаний с определенным направлением электрического вектора.

    Эксперимент с двумя поляроидами, лампой, экраном.

    Проделаем опыт с двумя одинаковыми прямоугольными пластинками из турмалина, вырезанными из кристалла параллельно его оптической оси. Оптическая ось кристалла – это направление, параллельное плоскости, в которой происходит колебание светового вектора.

    Наложим одну пластину на другую так, чтобы их оси совпадали по направлению. Через сложенную пару пропустим узкий пучок света.

    Будем вращать одну из пластин, при этом заметим, что яркость светового потока ослабевает и свет гасится, когда пластина повернется на 90°,т.е. угол между оптическими осями кристаллов составит 90°. При дальнейшем вращении пластинки проходящий световой поток вновь начнет усиливаться и когда пластинка повернется на 180°, интенсивность светового потока вновь станет прежней. Возвращаясь в исходное положение, пучок снова слабеет, проходит через минимум и доходит до прежней интенсивности при возвращении пластины в исходное положение. Таким образом, при повороте пластинки на 360° яркость светового потока, проходящего через обе пластины, два раза достигает «max» и два раза «min».

    Учитель: В чем причина изменения яркости светового потока? Отметим, что результат не зависит от того, какой из кристаллов вращается и на каком расстоянии друг от друга они находятся. Проделаем еще раз опыт.

    Будем поворачивать первый кристалл вокруг луча.

    Наблюдается ли изменение яркости?

    Ученик: Нет.

    Учитель: Будем поворачивать второй кристалл относительно луча. Что наблюдаем?

    Ученик: Видим, что яркость светового потока меняется.

    Учитель: Что можно сказать о световой волне, идущей от источника света? Каково ее отличие от волны, прошедшей через первый кристалл?

    Ученик: Кристалл турмалина способен пропускать световые колебания только в том случае, когда они направлены определенным образом относительно его оси.

    Световая волна, идущая от источника света, является поперечной, первый кристалл, являясь анизотропным, пропускает световые колебания, лежащие в одной определенной плоскости, параллельной оптической оси, поэтому при повороте второго кристалла на 90°, когда угол между оптическими осями составит 90°, световой поток гасится.

    Учитель: Действие турмалиновой пластинки заключается в том, что она пропускает колебания, электрический вектор которых параллелен оптической оси. Колебания, вектор которых перпендикулярен оптической оси, поглощаются пластинкой. Явление поляризации доказывает, что свет – поперечная волна. Делаем вывод, что световая волна – это частный случай электромагнитной волны.

    Плоскость, в которой происходят световые колебания, после выхода из кристалла, является плоскостью колебаний.

    Плоскостью поляризации является плоскость, в которой совершает колебания вектор индукции .

    Световая волна, прошедшая первый кристалл, является линейно-поляризованной или плоско-поляризованной.

    Запись в тетради: 1) Гипотеза Максвелла:

    а) с=- скорость света.

    Для лучшего понимания проведем аналогию колебаний световой волны с механическими колебаниями.

    Опыт. Если резиновый шнур присоединить к ротору генератора электродвигателя, то шнур будет колебаться во всех направлениях, подобно колебанию вектора напряженности . На пути шнура поставим вертикальную щель.

    Что наблюдаем?

    Ученик: Пройдут только те колебания, направления которых вертикальны и параллельны щели.

    Поляризация света наблюдается при явлениях отражениях и преломлениях, т.е. при падении световой волны на границу раздела сред. В отраженном луче преобладают колебания, перпендикулярные плоскости падения, а в преломленном – параллельные плоскости падения.

    Если световая волна распространяется в однородной среде, то поляризации света не происходит. Свет частично поляризуется при отражении от поверхности диэлектрика.

    У световой волны, проходящей через растворы сахара, глюкозы, ряда кислот наблюдается поворот плоскости поляризации. Угол поворота пропорционален концентрации вещества в растворе. Такие растворы являются оптически активными. Степень оптической активности у разных веществ различна. Для измерения угла поворота применяют поляриметры. Для всех активных веществ угол поворота плоскости колебаний пропорционален толщине слоя и концентрации раствора.

    Запись в тетради:

    Оптически активные вещества: сахар, глюкоза, некоторые кислоты.

    Угол поворота плоскости колебаний: ,

    К – удельное вращение;
    с – концентрация,
    l – толщина слоя.

    Поляриметр – прибор для измерения угла поворота плоскости поляризации в оптически активных веществах.

    Применение поляризации.

    Использование поляриметров:

    1. в пищевой промышленности для определения концентрации раствора, сахара (сахариметры), белков, различных органических кислот;
    2. в медицине для определения концентрации сахара в крови по углу поворота плоскости поляризации;

    Использование поляроидов:

    1. при оформление витрин, театральных декораций;
    2. при фотографировании для устранения бликов при помощи поляризационных фильтров;
    3. в геофизике – при изучении свойств облаков при определении характеристик поляризации света, рассеянного облаками.
    4. В космических исследованиях – при фотографировании туманностей в поляризованном свете исследуют структуру магнитных полей.
    5. В автотранспорте – для защиты водителей от слепящего действия фар встречных автомашин.
    6. В машиностроении использование фотоупругого метод а – изучение напряжений, возникающих в деталях машин.

    Краткие итоги подводим, отвечая на вопросы (слайд)

    1. Какое свойство световых волн доказано с помощью явления поляризации?
    2. Что называют поляризацией?
    3. Что представляет излучение отдельного атома?
    4. Что представляет собой естественный свет?
    5. Почему явление поляризации света доказывает, что свет является частным случаем электромагнитной волны?
    6. Свет, отраженный от поверхности воды, частично поляризован. Как убедиться в этом, применяя поляроид?

    Заключение.

    Учитель : С каким свойством световых волн вы познакомились на уроке?

    На уроке мы познакомились со свойством световых волн –поляризацией. Поляризация световых волн при прохождении света через анизотропные среды – кристаллы экспериментально доказывает поперечность световых волн.

    Световая волна, в которой колебания светового вектора происходят в определенной плоскости, называется поляризованной. Свет, создаваемый естественным источником, не поляризован.

    Литература:

    1. Н.М. Годжаев «Оптика», – Москва: «Высшая школа», 1977.
    2. Мякишев, А.З. Синяков, Б.А. Слободсков. Физика, Оптика, – Москва: «Высшая школа», 2003.
    3. А.А. Пинский Физика, 11 кл., – Москва: «Просвещение», 2002.

    Поляризация света. Основные теоретические сведения

    Явление поляризации света - это явление возникновения определенной ориентации вектора световой волны в пространстве [основная литература 1, 2, 3].

    Из теории Максвелла известно, что электромагнитная волна поперечна, т. е. , , где - направление распространения волны. Ориентацию вектора в плоскости можно определить путем следующих рассуждений и наблюдений.

    Предположим вначале, что вектор (рис. 1) фиксирован, т. е. не меняет своего положения в плоскости, перпендикулярной направлению распространения волны. В таком случае проекции вектора на различные плоскости, проходящие через x , будут различны.

    Рис. 1. и - две произвольные плоскости, проходящие через направление распространения волны x

    Например, на рис. 1 в пл.     , а в пл.     , где - угол между плоскостями и .

    Различие проекций вектора на плоскости и должно привести к тому, что волна будет проявлять различные свойства по отношению к плоскостям и .

    Опыт: в общем случае волны, распространяющиеся непосредственно от источника, таких свойств не проявляют. Полученный экспериментальный факт означает, что принятое выше предположение о фиксированном положении вектора в плоскости, перпендикулярной направлению распространения волны, не соответствует действительности.

    Такой вывод находится в соответствии с природой излучения. Световая волна от естественного источника состоит из множества цугов волн, испускаемых отдельными атомами. Плоскость колебаний (т. е. плоскость, проведенная через направление вектора волны и направление луча) для каждого цуга ориентирована случайным образом. Поэтому в естественном свете, в плоскости, перпендикулярной лучу, одновременно присутствуют колебания всевозможных направлений вектора (рис. 2). Вероятности реализации их одинаковы.

    Рис. 2. Моментальное изображение вектора естественного света в плоскости, перпендикулярной направлению распространения волны

    Поэтому величина вектора , усредненная по времени наблюдения, будет одинаковой в любой плоскости, проходящей через направление луча. Это должно привести к тому, что волна будет проявлять одинаковые свойства по отношению к любой из этих плоскостей. Именно это и наблюдается на опыте.

    Для простоты анализа некоторых процессов проявления света, естественный свет можно рассматривать как некоторую результирующую от всех цугов поперечную волну, которую можно считать монохроматической, у которой направление вектора в плоскости, перпендикулярной направлению распространения, быстро и беспорядочно сменяют друг друга [дополнительная литература 2, 3]

    Направлению распространения волны;

  • Круговую поляризацию - правую либо левую, в зависимости от направления вращения вектора индукции;
  • Эллиптическую поляризацию - случай, промежуточный между круговой и линейными поляризациями.
  • Некогерентное излучение может не быть поляризованным, либо быть полностью или частично поляризованным любым из указанных способов. В этом случае понятие поляризации понимается статистически.

    При теоретическом рассмотрении поляризации волна полагается распространяющейся горизонтально . Тогда можно говорить о вертикальной и горизонтальной линейных поляризациях волны.

    Линейная Круговая Эллиптическая


    Теория явления

    Электромагнитная волна может быть разложена (как теоретически, так и практически) на две поляризованные составляющие, например поляризованные вертикально и горизонтально. Возможны другие разложения, например по иной паре взаимно перпендикулярных направлений, или же на две составляющие, имеющие левую и правую круговую поляризацию. При попытке разложить линейно поляризованную волну по круговым поляризациям (или наоборот) возникнут две составляющие половинной интенсивности.

    Как с квантовой, так и с классической точки зрения, поляризация может быть описана двумерным комплексным вектором (вектором Джонса ). Поляризация фотона является одной из реализаций q-бита .

    Линейную поляризацию имеет обычно излучение антенн .

    По изменению поляризации света при отражении от поверхности можно судить о структуре поверхности, оптических постоянных, толщине образца.

    Если рассеянный свет поляризовать, то, используя поляризационный фильтр с иной поляризацией, можно ограничивать прохождение света. Интенсивность света прошедшего через поляризаторы подчиняется закону Малюса . На этом принципе работают жидкокристаллические экраны .

    Некоторые живые существа, например пчёлы, способны различать линейную поляризацию света, что даёт им дополнительные возможности для ориентации в пространстве. Обнаружено, что некоторые животные, например креветка-богомол павлиновая способны различать циркулярно-поляризованный свет, то есть свет с круговой поляризацией.

    История открытия

    Открытию поляризованных световых волн предшествовали работы многих учёных. В 1669 г. датский учёный Э. Бартолин сообщил о своих опытах с кристаллами известкового шпата (CaCO3), чаще всего имеющими форму правильного ромбоэдра, которые привозили возвращающиеся из Исландии моряки. Он с удивлением обнаружил, что луч света при прохождении сквозь кристалл расщепляется на два луча (называемых теперь обыкновенным и необыкновенным). Бартолин провёл тщательные исследования обнаруженного им явления двойного лучепреломления, однако объяснения ему дать не смог. Через двадцать лет после опытов Э. Бартолина его открытие привлекло внимание нидерландского учёного Х. Гюйгенса. Он сам начал исследовать свойства кристаллов исландского шпата и дал объяснение явлению двойного лучепреломления на основе своей волновой теории света. При этом он ввёл важное понятие оптической оси кристалла, при вращении вокруг которой отсутствует анизотропия свойств кристалла, т. е. их зависимость от направления (конечно, такой осью обладают далеко не все кристаллы). В своих опытах Гюйгенс пошёл дальше Бартолина, пропуская оба луча, вышедшие из кристалла исландского шпата, сквозь второй такой же кристалл. Оказалось, что если оптические оси обоих кристаллов параллельны, то дальнейшего разложения этих лучей уже не происходит. Если же второй ромбоэдр повернуть на 180 градусов вокруг направления распространения обыкновенного луча, то при прохождении через второй кристалл необыкновенный луч претерпевает сдвиг в направлении, противоположном сдвигу в первом кристалле, и из такой системы оба луча выйдут соединёнными в один пучок. Выяснилось также, что в зависимости от величины угла между оптическими осями кристаллов изменяется интенсивность обыкновенного и необыкновенного лучей. Эти исследования вплотную подвели Гюйгенса к открытию явления поляризации света, однако решающего шага он сделать не смог, поскольку световые волны в его теории предполагались продольными. Для объяснения опытов Х. Гюйгенса И. Ньютон, придерживавшийся корпускулярной теории света, выдвинул идею об отсутствии осевой симметрии светового луча и этим сделал важный шаг к пониманию поляризации света. В 1808 г. французский физик Э. Малюс, глядя сквозь кусок исландского шпата на блестевшие в лучах заходящего солнца окна Люксембургского дворца в Париже, к своему удивлению заметил, что при определённом положении кристалла было видно только одно изображение. На основании этого и других опытов и опираясь на корпускулярную теорию света Ньютона, он предположил, что корпускулы в солнечном свете ориентированы беспорядочно, но после отражения от какой-либо поверхности или прохождения сквозь анизотропный кристалл они приобретают определённую ориентацию. Такой «упорядоченный» свет он назвал поляризованным.

    Параметры Стокса

    Изображение поляризации языком параметров Стокса на сфере Пуанкаре

    В общем случае плоская монохроматическая волна имеет правую или левую эллиптическую поляризацию. Полная характеристика эллипса даётся тремя параметрами, например,полудлинами сторон прямоугольника, в который вписан эллипс поляризации A 1 , A 2 и разностью фаз φ , либо полуосями эллипса a , b и углом ψ между осью x и большой осью эллипса. Удобно описывать эллиптически поляризованную волну на основе параметров Стокса :

    , ,

    Независимыми являются только три из них, ибо справедливо тождество:

    Если ввести вспомогательный угол χ , определяемый выражением (знак соответствует правой, а - левой поляризации), то можно получить следующие выражения для параметров Стокса:

    На основе этих формул можно характеризовать поляризацию световой волны наглядным геометрическим способом. При этом параметры Стокса , , интерпретируются, как декартовы координаты точки, лежащей на поверхности сферы радиуса . Углы и имеют смысл сферических угловых координат этой точки. Такое геометрическое представление предложил Пуанкаре , поэтому эта сфера называется сферой Пуанкаре.

    Наряду с , , используют также нормированные параметры Стокса , , . Для поляризованного света .

    См. также

    Литература

    • Ахманов С.А., Никитин С.Ю. - Физическая оптика, 2 издание, M. - 2004.
    • Борн М., Вольф Э. - Основы оптики, 2 издание, исправленное, пер. с англ.,М. - 1973

    Примечания


    Wikimedia Foundation . 2010 .

    Смотреть что такое "Поляризация света" в других словарях:

      Физ. характеристика оптич. излучения, описывающая поперечную анизотропию световых волн, т. е. неэквивалентность разл. направлений в плоскости, перпендикулярной световому лучу. Первые указания на поперечную анизотропию светового луча были получены … Физическая энциклопедия

      Современная энциклопедия

      Поляризация света - ПОЛЯРИЗАЦИЯ СВЕТА, упорядоченность в ориентации вектора напряженности электрического E и магнитного H полей световой волны в плоскости, перпендикулярной распространению света. Различают линейную поляризацию света, когда E сохраняет постоянные… … Иллюстрированный энциклопедический словарь

      поляризация света - поляризация Свойство света, характеризующееся пространственно временной упорядоченностью ориентации магнитного и электрического векторов. Примечания 1. В зависимости от видов упорядоченности различают: линейную поляризацию, эллиптическую… …

      - (лат. от polus). Свойство лучей света, которые, будучи отраженными или преломленными, утрачивают способность отражаться или преломляться вновь, по известным направлениям. Словарь иностранных слов, вошедших в состав русского языка. Чудинов А.Н.,… … Словарь иностранных слов русского языка

      Упорядоченность в ориентации векторов напряженностей электрических E и магнитных H полей световой волны в плоскости, перпендикулярной световому лучу. Различают линейную поляризацию света, когда E сохраняет постоянное направление (плоскостью… … Большой Энциклопедический словарь

      поляризация [света] - Упорядоченность ориентации вектора электромагнитного поля световой волны в плоскости, перпендикулярной направлению распространения светового луча; принцип П. используется в конструкции поляризационного микроскопа [Арефьев В.А., Лисовенко Л.А.… … Справочник технического переводчика

      Упорядоченность в ориентации векторов напряжённостей электрических E и магнитных Н полей световой волны в плоскости, перпендикулярной световому лучу. Различают линейную поляризацию света, когда Е сохраняет постоянное направление (плоскостью… … Энциклопедический словарь

      Polarization поляризация [света]. Упорядоченность ориентации вектора электромагнитного поля световой волны в плоскости, перпендикулярной направлению распространения светового луча; принцип П. используется в конструкции поляризационного микроскопа … Молекулярная биология и генетика. Толковый словарь.

      поляризация света - šviesos poliarizacija statusas T sritis fizika atitikmenys: angl. polarization of light vok. Lichtpolarisation, f rus. поляризация света, f pranc. polarisation de la lumière, f … Fizikos terminų žodynas


    Просмотров