Определение всех пределов. Пределы в математике для чайников: объяснение, теория, примеры решений. Бесконечно большие функции

Определение 1. ПустьЕ – бесконечное множество. Если любая окрестностьсодержит точки множестваЕ , отличные от точкиа , тоа называетсяпредельной точкой множестваЕ .

Определение 2. (Генрих Гейне (1821-1881)). Пусть функция
определена на множествеХ иА называетсяпределом функции
в точке(или при
, если для любой последовательности значений аргумента
, сходящейся к, соответствующая последовательность значений функциисходится к числуА . Пишут:
.

Примеры . 1) Функция
имеет предел, равныйс , в любой точке числовой прямой.

Действительно, для любой точки и любой последовательности значений аргумента
, сходящейся ки состоящей из чисел, отличных от, соответствующая последовательность значений функции имеет вид
, а мы знаем, что эта последовательность сходится кс . Поэтому
.

2) Для функции

.

Это очевидно, так как если
, то и
.

3) Функция Дирихле
не имеет предела ни в одной точке.

Действительно, пусть
и
, причем все– рациональные числа. Тогда
для всехn , поэтому
. Если же
и все– иррациональные числа, то
для всехn , поэтому
. Мы видим, что условия определения 2 не выполняются, поэтому
не существует.

4)
.

Действительно, возьмем произвольную последовательность
, сходящуюся к

числу 2. Тогда . Что и требовалось доказать.

Определение 3. (Коши (1789-1857)). Пусть функция
определена на множествеХ и– предельная точка этого множества. ЧислоА называетсяпределом функции
в точке(или при
, если для любого
найдется
, такое, что для всех значений аргументах , удовлетворяющих неравенству

,

справедливо неравенство

.

Пишут:
.

Определение Коши можно дать и с помощью окрестностей, если заметить, что , а:

пусть функция
определена на множествеХ и– предельная точка этого множества. ЧислоА называется пределом функции
в точке, если для любой-окрестности точкиА
найдется проколотая- окрестность точки
,такая, что
.

Это определение полезно проиллюстрировать рисунком.

Пример 5.
.

Действительно, возьмем
произвольно и найдем
, такое, что для всехх , удовлетворяющих неравенству
выполняется неравенство
. Последнее неравенство равносильно неравенству
, поэтому видим, что достаточно взять
. Утверждение доказано.

Справедлива

Теорема 1. Определения предела функции по Гейне и по Коши эквивалентны.

Доказательство . 1) Пусть
по Коши. Докажем, что это же число является пределом и по Гейне.

Возьмем
произвольно. Согласно определению 3 существует
, такое, что для всех
выполняется неравенство
. Пусть
– произвольная последовательность такая, что
при
. Тогда существует номерN такой, что для всех
выполняется неравенство
, поэтому
для всех
, т.е.

по Гейне.

2) Пусть теперь
по Гейне. Докажем, что
и по Коши.

Предположим противное, т.е. что
по Коши. Тогда существует
такое, что для любого
найдется
,
и
. Рассмотрим последовательность
. Для указанного
и любогоn существует

и
. Это означает, что
, хотя
, т.е. числоА не является пределом
в точкепо Гейне. Получили противоречие, которое и доказывает утверждение. Теорема доказана.

Теорема 2 (о единственности предела). Если существует предел функции в точке, то он единственный.

Доказательство . Если предел определен по Гейне, то его единственность вытекает из единственности предела последовательности. Если предел определен по Коши, то его единственность вытекает из эквивалентности определений предела по Коши и по Гейне. Теорема доказана.

Аналогично критерию Коши для последовательностей имеет место критерий Коши существования предела функции. Прежде чем его сформулировать, дадим

Определение 4. Говорят, что функция
удовлетворяет условию Коши в точке, если для любого
существует

, таких, что
и
, выполняется неравенство
.

Теорема 3 (критерий Коши существования предела). Для того чтобы функция
имела в точкеконечный предел, необходимо и достаточно, чтобы в этой точке функция удовлетворяла условию Коши.

Доказательство .Необходимость . Пусть
. Надо доказать, что
удовлетворяет в точкеусловию Коши.

Возьмем
произвольно и положим
. По определению предела длясуществует
, такое, что для любых значений
, удовлетворяющих неравенствам
и
, выполняются неравенства
и
. Тогда

Необходимость доказана.

Достаточность . Пусть функция
удовлетворяет в точкеусловию Коши. Надо доказать, что она имеет в точкеконечный предел.

Возьмем
произвольно. По определению 4 найдется
, такое, что из неравенств
,
следует, что
– это дано.

Покажем сначала, что для всякой последовательности
, сходящейся к, последовательность
значений функции сходится. Действительно, если
, то, в силу определения предела последовательности, для заданного
найдется номерN , такой, что для любых

и
. Поскольку
в точкеудовлетворяет условию Коши, имеем
. Тогда по критерию Коши для последовательностей последовательность
сходится. Покажем, что все такие последовательности
сходятся к одному и тому же пределу. Предположим противное, т.е. что есть последовательности
и
,
,
, такие, что. Рассмотрим последовательность. Ясно, что она сходится к, поэтому по доказанному выше последовательностьсходится, что невозможно, так как подпоследовательности
и
имеют разные пределыи. Полученное противоречие показывает, что=. Поэтому по определению Гейне функция имеет в точкеконечный предел. Достаточность, а значит и теорема, доказаны.

Определение пределов последовательности и функции, свойства пределов, первый и второй замечательные пределы, примеры.

Постоянное число а называется пределом последовательности {x n}, если для любого сколь угодно малого положительного числа ε > 0 существует номер N, что все значения x n , у которых n>N, удовлетворяют неравенству

Записывают это следующим образом: или x n → a.

Неравенство (6.1) равносильно двойному неравенству

a - ε < x n < a + ε которое означает, что точки x n , начиная с некоторого номера n>N, лежат внутри интервала (a-ε , a+ε), т.е. попадают в какую угодно малую ε-окрестность точки а .

Последовательность, имеющая предел, называется сходящейся , в противном случае - расходящейся .

Понятие предел функции является обобщением понятия предел последовательности, так как предел последовательности можно рассматривать как предел функции x n = f(n) целочисленного аргумента n .

Пусть дана функция f(x) и пусть a - предельная точка области определения этой функции D(f), т.е. такая точка, любая окрестность которой содержит точки множества D(f), отличные от a . Точка a может принадлежать множеству D(f), а может и не принадлежать ему.

Определение 1. Постоянное число А называется предел функции f(x) при x→ a, если для всякой последовательности {x n } значений аргумента, стремящейся к а , соответствующие им последовательности {f(x n)} имеют один и тот же предел А.

Это определение называют определением предела функции по Гейне, или “на языке последовательностей ”.

Определение 2 . Постоянное число А называется предел функции f(x) при x→a, если, задав произвольное, как угодно малое положительное число ε, можно найти такое δ >0 (зависящее от ε), что для всех x , лежащих в ε-окрестности числа а , т.е. для x , удовлетворяющих неравенству
0 < x-a < ε , значения функции f(x) будут лежать в ε-окрестности числа А, т.е. |f(x)-A| < ε

Это определение называют определением предел функции по Коши, или “на языке ε - δ "

Определения 1 и 2 равносильны. Если функция f(x) при x → a имеет предел , равный А, это записывается в виде

В том случае, если последовательность {f(x n)} неограниченно возрастает (или убывает) при любом способе приближения x к своему пределу а , то будем говорить, что функция f(x) имеет бесконечный предел, и записывать это в виде:

Переменная величина (т.е. последовательность или функция), предел которой равен нулю, называется бесконечно малой величиной.

Переменная величина, предел которой равен бесконечности, называется бесконечно большой величиной .

Чтобы найти предел на практике пользуются следующими теоремами.

Теорема 1 . Если существует каждый предел

(6.4)

(6.5)

(6.6)

Замечание . Выражения вида 0/0, ∞/∞, ∞-∞ 0*∞ являются неопределенными, например, отношение двух бесконечно малых или бесконечно больших величин, и найти предел такого вида носит название “раскрытие неопределенностей”.

Теорема 2.

т.е. можно переходить к пределу в основании степени при постоянном показателе, в частности,

Теорема 3.

(6.11)

где e » 2.7 - основание натурального логарифма. Формулы (6.10) и (6.11) носят название первый замечательного предело и второй замечательный предел.

Используются на практике и следствия формулы (6.11):

(6.12)

(6.13)

(6.14)

в частности предел,

Eсли x → a и при этом x > a, то пишут x →a + 0. Если, в частности, a = 0, то вместо символа 0+0 пишут +0. Аналогично если x→a и при этом x и называются соответственно предел справа и предел слева функции f(x) в точке а . Чтобы существовал предел функции f(x) при x→ a необходимо и достаточно, чтобы . Функция f(x) называется непрерывной в точке x 0 , если предел

(6.15)

Условие (6.15) можно переписать в виде:

то есть возможен предельный переход под знаком функции, если она непрерывна в данной точке.

Если равенство (6.15) нарушено, то говорят, что при x = x o функция f(x) имеет разрыв. Рассмотрим функцию y = 1/x. Областью определения этой функции является множество R , кроме x = 0. Точка x = 0 является предельной точкой множества D(f), поскольку в любой ее окрестности, т.е. в любом открытом интервале, содержащем точку 0, есть точки из D(f), но она сама не принадлежит этому множеству. Значение f(x o)= f(0) не определено, поэтому в точке x o = 0 функция имеет разрыв.

Функция f(x) называется непрерывной справа в точке x o , если предел

и непрерывной слева в точке x o, если предел

Непрерывность функции в точке x o равносильна ее непрерывности в этой точке одновременно и справа и слева.

Для того, чтобы функция была непрерывна в точке x o , например, справа, необходимо, во-первых, чтобы существовал конечный предел , а во-вторых, чтобы этот предел был равен f(x o). Следовательно, если хотя бы одно из этих двух условий не выполняется, то функция будет иметь разрыв.

1. Если предел существует и не равен f(x o), то говорят, что функция f(x) в точке x o имеет разрыв первого рода, или скачок .

2. Если предел равен +∞ или -∞ или не существует, то говорят, что в точке x o функция имеет разрыв второго рода .

Например, функция y = ctg x при x → +0 имеет предел, равный +∞ , значит, в точке x=0 она имеет разрыв второго рода. Функция y = E(x) (целая часть от x ) в точках с целыми абсциссами имеет разрывы первого рода, или скачки.

Функция, непрерывная в каждой точке промежутка , называется непрерывной в . Непрерывная функция изображается сплошной кривой.

Ко второму замечательному пределу приводят многие задачи, связанные с непрерывным ростом какой-либо величины. К таким задачам, например, относятся: рост вклада по закону сложных процентов, рост населения страны, распад радиоактивного вещества, размножение бактерий и т.п.

Рассмотрим пример Я. И. Перельмана , дающий интерпретацию числа e в задаче о сложных процентах. Число e есть предел . В сбербанках процентные деньги присоединяются к основному капиталу ежегодно. Если присоединение совершается чаще, то капитал растет быстрее, так как в образовании процентов участвует большая сумма. Возьмем чисто теоретический, весьма упрощенный пример. Пусть в банк положено 100 ден. ед. из расчета 100 % годовых. Если процентные деньги будут присоединены к основному капиталу лишь по истечении года, то к этому сроку 100 ден. ед. превратятся в 200 ден.ед. Посмотрим теперь, во что превратятся 100 ден. ед., если процентные деньги присоединять к основному капиталу каждые полгода. По истечении полугодия 100 ден. ед. вырастут в 100 ×1,5 = 150, а еще через полгода - в 150× 1,5 = 225 (ден. ед.). Если присоединение делать каждые 1/3 года, то по истечении года 100 ден. ед. превратятся в 100 × (1 +1/3) 3 ≈ 237 (ден. ед.). Будем учащать сроки присоединения процентных денег до 0,1 года, до 0,01 года, до 0,001 года и т.д. Тогда из 100 ден. ед. спустя год получится:

100×(1 +1/10) 10 ≈ 259 (ден. ед.),

100×(1+1/100) 100 ≈ 270 (ден. ед.),

100×(1+1/1000) 1000 ≈271 (ден. ед.).

При безграничном сокращении сроков присоединения процентов наращенный капитал не растет беспредельно, а приближается к некоторому пределу, равному приблизительно 271. Более чем в 2,71 раз капитал, положенный под 100% годовых, увеличиться не может, даже если бы наросшие проценты присоединялись к капиталу каждую секунду, потому что предел

Пример 3.1 . Пользуясь определением предела числовой последовательности, доказать, что последовательность x n =(n-1)/n имеет предел, равный 1.

Решение. Нам надо доказать, что, какое бы ε > 0 мы ни взяли, для него найдется натуральное число N, такое, что для всех n > N имеет место неравенство |x n -1| < ε

Возьмем любое ε > 0. Так как x n -1 =(n+1)/n - 1= 1/n, то для отыскания N достаточно решить неравенство 1/n<ε. Отсюда n>1/ε и, следовательно, за N можно принять целую часть от 1/ε N = E(1/ε). Мы тем самым доказали, что предел .

Пример 3.2. Найти предел последовательности, заданной общим членом .

Решение. Применим теорему предел суммы и найдем предел каждого слагаемого. При n → ∞ числитель и знаменатель каждого слагаемого стремится к бесконечности, и мы не можем непосредственно применить теорему предел частного. Поэтому сначала преобразуем x n , разделив числитель и знаменатель первого слагаемого на n 2 , а второго на n . Затем, применяя теорему предел частного и предел суммы, найдем:

Пример 3.3 . . Найти .

Решение.

Здесь мы воспользовались теоремой о пределе степени: предел степени равен степени от предела основания.

Пример 3.4 . Найти ().

Решение. Применять теорему предел разности нельзя, поскольку имеем неопределенность вида ∞-∞. Преобразуем формулу общего члена:

Пример 3.5 . Дана функция f(x)=2 1/x . Доказать, что предел не существует.

Решение. Воспользуемся определением 1 предела функции через последовательность. Возьмем последовательность { x n }, сходящуюся к 0, т.е. Покажем, что величина f(x n)= для разных последовательностей ведет себя по-разному. Пусть x n = 1/n. Очевидно, что , тогда предел Выберем теперь в качестве x n последовательность с общим членом x n = -1/n, также стремящуюся к нулю. Поэтому предел не существует.

Пример 3.6 . Доказать, что предел не существует.

Решение. Пусть x 1 , x 2 ,..., x n ,... - последовательность, для которой
. Как ведет себя последовательность {f(x n)} = {sin x n } при различных x n → ∞

Если x n = p n, то sin x n = sin (p n) = 0 при всех n и предел Если же
x n =2
p n+ p /2, то sin x n = sin(2 p n+ p /2) = sin p /2 = 1 для всех n и следовательно предел . Таким образом, не существует.

Приводятся формулировки основных теорем и свойств предела функции. Даны определения конечных и бесконечных пределов в конечных точках и на бесконечности (двусторонних и односторонних) по Коши и Гейне. Рассмотрены арифметические свойства; теоремы, связанные с неравенствами; критерий сходимости Коши; предел сложной функции; свойства бесконечно малых, бесконечно больших и монотонных функций. Дано определение функции.

Содержание

Второе определение по Коши

Предел функции (по Коши) при ее аргументе x , стремящемся к x 0 - это такое конечное число или бесконечно удаленная точка a , для которой выполняются следующие условия:
1) существует такая проколотая окрестность точки x 0 , на которой функция f(x) определена;
2) для любой окрестности точки a , принадлежащей , существует такая проколотая окрестность точки x 0 , на которой значения функции принадлежат выбранной окрестности точки a :
при .

Здесь a и x 0 также могут быть как конечными числами, так и бесконечно удаленными точками. С помощью логических символов существования и всеобщности это определение можно записать следующим образом:
.

Если в качестве множества взять левую или правую окрестность конечной точки, то получим определение предела по Коши слева или справа.

Теорема
Определения предела функции по Коши и по Гейне эквивалентны.
Доказательство

Применяемые окрестности точек

Тогда, фактически, определение по Коши означает следующее.
Для любых положительных чисел , существуют числа , так что для всех x, принадлежащих проколотой окрестности точки : , значения функции принадлежат окрестности точки a: ,
где , .

С таким определением не совсем удобно работать, поскольку окрестности определяются с помощью четырех чисел . Но его можно упростить, если ввести окрестности с равноудаленными концами. То есть можно положить , . Тогда мы получим определение, которое проще использовать при доказательстве теорем. При этом оно является эквивалентным определению, в котором используются произвольные окрестности. Доказательство этого факта приводится в разделе «Эквивалентность определений предела функции по Коши» .

Тогда можно дать единое определение предела функции в конечных и бесконечно удаленных точках:
.
Здесь для конечных точек
; ;
.
Любые окрестности бесконечно удаленных точек являются проколотыми:
; ; .

Конечные пределы функции в конечных точках

Число a называется пределом функции f(x) в точке x 0 , если
1) функция определена на некоторой проколотой окрестности конечной точки ;
2) для любого существует такое , зависящее от , что для всех x , для которых , выполняется неравенство
.

С помощью логических символов существования и всеобщности определение предела функции можно записать следующим образом:
.

Односторонние пределы.
Левый предел в точке (левосторонний предел):
.
Правый предел в точке (правосторонний предел):
.
Пределы слева и справа часто обозначают так:
; .

Конечные пределы функции в бесконечно удаленных точках

Аналогичным образом определяются пределы в бесконечно удаленных точках.
.
.
.

Бесконечные пределы функции

Также можно ввести определения бесконечных пределов определенных знаков, равных и :
.
.

Свойства и теоремы предела функции

Далее мы считаем, что рассматриваемые функции определены в соответствующей проколотой окрестности точки , которая является конечным числом или одним из символов: . Также может быть точкой одностороннего предела, то есть иметь вид или . Окрестность является двусторонней для двустороннего предела и односторонней для одностороннего.

Основные свойства

Если значения функции f(x) изменить (или сделать неопределенными) в конечном числе точек x 1 , x 2 , x 3 , ... x n , то это изменение никак не повлияет на существование и величину предела функции в произвольной точке x 0 .

Если существует конечный предел , то существует такая проколотая окрестность точки x 0 , на которой функция f(x) ограничена:
.

Пусть функция имеет в точке x 0 конечный предел, отличный от нуля:
.
Тогда, для любого числа c из интервала , существует такая проколотая окрестность точки x 0 , что для ,
, если ;
, если .

Если, на некоторой проколотой окрестности точки , - постоянная, то .

Если существуют конечные пределы и и на некоторой проколотой окрестности точки x 0
,
то .

Если , и на некоторой окрестности точки
,
то .
В частности, если на некоторой окрестности точки
,
то если , то и ;
если , то и .

Если на некоторой проколотой окрестности точки x 0 :
,
и существуют конечные (или бесконечные определенного знака) равные пределы:
, то
.

Доказательства основных свойств приведены на странице
«Основные свойства предела функции ».

Пусть функции и определены в некоторой проколотой окрестности точки . И пусть существуют конечные пределы:
и .
И пусть C - постоянная, то есть заданное число. Тогда
;
;
;
, если .

Если , то .

Доказательства арифметических свойств приведены на странице
«Арифметические свойства предела функции ».

Критерий Коши существования предела функции

Теорема
Для того, чтобы функция , определенная на некоторой проколотой окрестности конечной или бесконечно удаленной точки x 0 , имела в этой точке конечный предел, необходимо и достаточно, чтобы для любого ε > 0 существовала такая проколотая окрестность точки x 0 , что для любых точек и из этой окрестности, выполнялось неравенство:
.

Предел сложной функции

Теорема о пределе сложной функции
Пусть функция имеет предел и отображает проколотую окрестность точки на проколотую окрестность точки . Пусть функция определена на этой окрестности и имеет на ней предел .
Здесь - конечные или бесконечно удаленные точки: . Окрестности и соответствующие им пределы могут быть как двусторонние, так и односторонние.
Тогда существует предел сложной функции и он равен :
.

Теорема о пределе сложной функции применяется в том случае, когда функция не определена в точке или имеет значение, отличное от предельного . Для применения этой теоремы, должна существовать проколотая окрестность точки , на которой множество значений функции не содержит точку :
.

Если функция непрерывна в точке , то знак предела можно применять к аргументу непрерывной функции:
.
Далее приводится теорема, соответствующая этому случаю.

Теорема о пределе непрерывной функции от функции
Пусть существует предел функции g(x) при x → x 0 , и он равен t 0 :
.
Здесь точка x 0 может быть конечной или бесконечно удаленной: .
И пусть функция f(t) непрерывна в точке t 0 .
Тогда существует предел сложной функции f(g(x)) , и он равен f(t 0) :
.

Доказательства теорем приведены на странице
«Предел и непрерывность сложной функции ».

Бесконечно малые и бесконечно большие функции

Бесконечно малые функции

Определение
Функция называется бесконечно малой при , если
.

Сумма, разность и произведение конечного числа бесконечно малых функций при является бесконечно малой функцией при .

Произведение функции, ограниченной на некоторой проколотой окрестности точки , на бесконечно малую при является бесконечно малой функцией при .

Для того, чтобы функция имела конечный предел , необходимо и достаточно, чтобы
,
где - бесконечно малая функция при .


«Свойства бесконечно малых функций ».

Бесконечно большие функции

Определение
Функция называется бесконечно большой при , если
.

Сумма или разность ограниченной функции, на некоторой проколотой окрестности точки , и бесконечно большой функции при является бесконечно большой функцией при .

Если функция является бесконечно большой при , а функция - ограничена, на некоторой проколотой окрестности точки , то
.

Если функция , на некоторой проколотой окрестности точки , удовлетворяет неравенству:
,
а функция является бесконечно малой при :
, и (на некоторой проколотой окрестности точки ), то
.

Доказательства свойств изложены в разделе
«Свойства бесконечно больших функций ».

Связь между бесконечно большими и бесконечно малыми функциями

Из двух предыдущих свойств вытекает связь между бесконечно большими и бесконечно малыми функциями.

Если функция являются бесконечно большой при , то функция является бесконечно малой при .

Если функция являются бесконечно малой при , и , то функция является бесконечно большой при .

Связь между бесконечно малой и бесконечно большой функцией можно выразить символическим образом:
, .

Если бесконечно малая функция имеет определенный знак при , то есть положительна (или отрицательна) на некоторой проколотой окрестности точки , то этот факт можно выразить так:
.
Точно также если бесконечно большая функция имеет определенный знак при , то пишут:
.

Тогда символическую связь между бесконечно малыми и бесконечно большими функциями можно дополнить следующими соотношениями:
, ,
, .

Дополнительные формулы, связывающие символы бесконечности, можно найти на странице
«Бесконечно удаленные точки и их свойства ».

Пределы монотонных функций

Определение
Функция , определенная на некотором множестве действительных чисел X называется строго возрастающей , если для всех таких что выполняется неравенство:
.
Соответственно, для строго убывающей функции выполняется неравенство:
.
Для неубывающей :
.
Для невозрастающей :
.

Отсюда следует, что строго возрастающая функция также является неубывающей. Строго убывающая функция также является невозрастающей.

Функция называется монотонной , если она неубывающая или невозрастающая.

Теорема
Пусть функция не убывает на интервале , где .
Если она ограничена сверху числом M : , то существует конечный предел . Если не ограничена сверху, то .
Если ограничена снизу числом m : , то существует конечный предел . Если не ограничена снизу, то .

Если точки a и b являются бесконечно удаленными, то в выражениях под знаками пределов подразумевается, что .
Эту теорему можно сформулировать более компактно.

Пусть функция не убывает на интервале , где . Тогда существуют односторонние пределы в точках a и b :
;
.

Аналогичная теорема для невозрастающей функции.

Пусть функция не возрастает на интервале , где . Тогда существуют односторонние пределы:
;
.

Доказательство теоремы изложено на странице
«Пределы монотонных функций ».

Определение функции

Функцией y = f(x) называется закон (правило), согласно которому, каждому элементу x множества X ставится в соответствие один и только один элемент y множества Y .

Элемент x ∈ X называют аргументом функции или независимой переменной .
Элемент y ∈ Y называют значением функции или зависимой переменной .

Множество X называется областью определения функции .
Множество элементов y ∈ Y , которые имеют прообразы в множестве X , называется областью или множеством значений функции .

Действительная функция называется ограниченной сверху (снизу) , если существует такое число M , что для всех выполняется неравенство:
.
Числовая функция называется ограниченной , если существует такое число M , что для всех :
.

Верхней гранью или точной верхней границей действительной функции называют наименьшее из чисел, ограничивающее область ее значений сверху. То есть это такое число s , для которого для всех и для любого , найдется такой аргумент , значение функции от которого превосходит s′ : .
Верхняя грань функции может обозначаться так:
.

Соответственно нижней гранью или точной нижней границей действительной функции называют наибольшее из чисел, ограничивающее область ее значений снизу. То есть это такое число i , для которого для всех и для любого , найдется такой аргумент , значение функции от которого меньше чем i′ : .
Нижняя грань функции может обозначаться так:
.

Использованная литература:
Л.Д. Кудрявцев. Курс математического анализа. Том 1. Москва, 2003.
С.М. Никольский. Курс математического анализа. Том 1. Москва, 1983.

См. также:

Предел функции - число a будет пределом некоторой изменяемой величины, если в процессе своего изменения эта переменная величина неограниченно приближается к a .

Или другими словами, число A является пределом функции y = f (x) в точке x 0 , если для всякой последовательности точек из области определения функции , не равных x 0 , и которая сходится к точке x 0 (lim x n = x0) , последовательность соответствующих значений функции сходится к числу A .

График функции, предел которой при аргументе, который стремится к бесконечности, равен L :

Значение А является пределом (предельным значением) функции f (x) в точке x 0 в случае, если для всякой последовательности точек , которая сходится к x 0 , но которая не содержит x 0 как один из своих элементов (т.е. в проколотой окрестности x 0 ), последовательность значений функции сходится к A .

Предел функции по Коши.

Значение A будет являться пределом функции f (x) в точке x 0 в случае, если для всякого вперёд взятого неотрицательного числа ε будет найдено соответствующее ему неотрицательно число δ = δ(ε) такое, что для каждого аргумента x , удовлетворяющего условию 0 < | x - x0 | < δ , будет выполнено неравенство | f (x) A | < ε .

Будет очень просто, если вы понимаете суть предела и основные правила нахождения его. То, что предел функции f (x) при x стремящемся к a равен A , записывается таким образом:

Причем значение, к которому стремится переменная x , может быть не только числом, но и бесконечностью (∞), иногда +∞ или -∞, либо предела может вообще не быть.

Чтоб понять, как находить пределы функции , лучше всего посмотреть примеры решения.

Необходимо найти пределы функции f (x) = 1/ x при:

x → 2, x → 0, x ∞.

Найдем решение первого предела. Для этого можно просто подставить вместо x число, к которому оно стремится, т.е. 2, получим:

Найдем второй предел функции . Здесь подставлять в чистом виде 0 вместо x нельзя, т.к. делить на 0 нельзя. Но мы можем брать значения, приближенные к нулю, к примеру, 0,01; 0,001; 0,0001; 0,00001 и так далее, причем значение функции f (x) будет увеличиваться: 100; 1000; 10000; 100000 и так далее. Т.о., можно понять, что при x → 0 значение функции, которая стоит под знаком предела, будет неограниченно возрастать, т.е. стремиться к бесконечности. А значит:

Касаемо третьего предела. Такая же ситуация, как и в прошлом случае, невозможно подставить в чистом виде. Нужно рассмотреть случай неограниченного возрастания x . Поочередно подставляем 1000; 10000; 100000 и так далее, имеем, что значение функции f (x) = 1/ x будет убывать: 0,001; 0,0001; 0,00001; и так далее, стремясь к нулю. Поэтому:

Необходимо вычислить предел функции

Приступая к решению второго примера, видим неопределенность . Отсюда находим старшую степень числителя и знаменателя - это x 3 , выносим в числителе и знаменателе его за скобки и далее сокращаем на него:

Ответ

Первым шагом в нахождении этого предела , подставим значение 1 вместо x , в результате чего имеем неопределенность . Для её решения разложим числитель на множители , сделаем это методом нахождения корней квадратного уравнения x 2 + 2 x - 3 :

D = 2 2 - 4*1*(-3) = 4 +12 = 16 D = √16 = 4

x 1,2 = (-2 ± 4) / 2 x 1 = -3; x 2 = 1.

Таким образом, числитель будет таким:

Ответ

Это определение его конкретного значения или определенной области, куда попадает функция, которая ограничена пределом.

Чтобы решить пределы, следуйте правилам:

Разобравшись в сути и основных правилах решения предела , вы получите базовое понятие о том, как их решать.

Доказывая свойства предела функции, мы убедились, что от проколотых окрестностей, в которых были определены наши функции и которые возникали в процессе доказательств, кроме свойств указанных во введении к предыдущему пункту 2, действительно ничего не потребовалось. Это обстоятельство служит оправданием для выделения следующего математического объекта.

а. База; определение и основные примеры

Определение 11. Совокупность В подмножеств множества X будем называть базой в множестве X, если выполнены два условия:

Иными словами, элементы совокупности В суть непустые множества и в пересечении любых двух из них содержится некоторый элемент из той же совокупности.

Укажем некоторые наиболее употребительные в анализе базы.

Если то вместо пишут и говорят, что х стремится к а справа или со стороны больших значений (соответственно, слева или со стороны меньших значений). При принята краткая запись вместо

Запись будет употребляться вместо Она означает, что а; стремится по множеству Е к а, оставаясь больше (меньше), чем а.

то вместо пишут и говорят, что х стремится к плюс бесконечности (соответственно, к минус бесконечности).

Запись будет употребляться вместо

При вместо мы (если это не ведет к недоразумению) будем, как это принято в теории предела последовательности, писать

Заметим, что все перечисленные базы обладают той особенностью, что пересечение любых двух элементов базы само является элементом этой базы, а не только содержит некоторый элемент базы. С другими базами мы встретимся при изучении функций, заданных не на числовой оси.

Отметим также, что используемый здесь термин «база» есть краткое обозначение того, что в математике называется «базисом фильтра», а введенный ниже предел по базе есть наиболее существенная для анализа часть созданного современным французским математиком А. Картаном понятия предела по фильтру

b. Предел функции по базе

Определение 12. Пусть - функция на множестве X; В - база в X. Число называется пределом функции по базе В, если для любой окрестности точки А найдется элемент базы, образ которого содержится в окрестности

Если А - предел функции по базе В, то пишут

Повторим определение предела по базе в логической символике:

Поскольку мы сейчас рассматриваем функции с числовыми значениями, полезно иметь в виду и следующую форму этого основного определения:

В этой формулировке вместо произвольной окрестности V (А) берется симметричная (относительно точки А) окрестность (е-окрестность). Эквивалентность этих определений для вещественнозначных функций вытекает из того, что, как уже говорилось, в любой окрестности точки содержится некоторая симметричная окрестность этой же точки (проведите доказательство полностью!).

Мы дали общее определение предела функции по базе. Выше были рассмотрены примеры наиболее употребительных в анализе баз. В конкретной задаче, где появляется та или иная из этих баз, необходимо уметь расшифровать общее определение и записать его для конкретной базы.

Рассматривая примеры баз, мы, в частности, ввели понятие окрестности бесконечности. Если использовать это понятие, то в соответствии с общим определением предела разумно принять следующие соглашения:

или, что то же самое,

Обычно под подразумевают малую величину. В приведенных определениях это, разумеется, не так. В соответствии с принятыми соглашениями, например, можем записать

Для того чтобы можно было считать доказанными и в общем случае предела по произвольной базе все те теоремы о пределах, которые мы доказали в пункте 2 для специальной базы , необходимо дать соответствующие определения: финально постоянной, финально ограниченной и бесконечно малой при данной базе функций.

Определение 13. Функция называется финально постоянной при базе В, если существуют число и такой элемент базы, в любой точке которого

Определение 14. Функция называется ограниченной при базе В или финально ограниченной при базе В, если существуют число с и такой элемент базы, в любой точке которого

Определение 15. Функция называется бесконечно малой при базе В, если

После этих определений и основного наблюдения о том, что для доказательства теорем о пределах нужны только свойства базы, можно считать, что все свойства предела, установленные в пункте 2, справедливы для пределов по любой базе.

В частности, мы можем теперь говорить о пределе функции при или при или при

Кроме того, мы обеспечили себе возможность применения теории пределов и в том случае, когда функции будут определены не на числовых множествах; в дальнейшем это окажется особенно ценным. К примеру, длина кривой есть числовая функция, определенная на некотором классе кривых. Если мы знаем эту функцию на ломаных, то потом предельным переходом определяем ее для более сложных кривых, например для окружности.

В данный же момент основная польза от сделанного наблюдения и введенного в связи с ним понятия базы состоит в том, что они избавляют нас от проверок и формальных доказательств теорем о пределах для каждого конкретного вида предельных переходов или, в нашей нынешней терминологии, для каждого конкретного вида баз.

Для того чтобы окончательно освоиться с понятием предела по произвольной базе, доказательства дальнейших свойств предела функции мы проведем в общем виде.


Просмотров