Тело скользит вверх по наклонной плоскости. Движение тела по наклонной плоскости вверх. Движение по наклонной плоскости: силы

В данной статье рассказывается о том, как решать задачи про движение по наклонной плоскости. Рассмотрено подробное решение задачи о движении связанных тел по наклонной плоскости из ЕГЭ по физике.

Решение задачи о движении по наклонной плоскости

Прежде чем перейти непосредственно к решению задачи, как репетитор по математике и физике, рекомендую тщательно проанализировать ее условие. Начать нужно с изображения сил, которые действуют на связанные тела:

Здесь и — силы натяжения нити, действующие на левое и правое тело, соответственно, — сила реакции опоры, действующая на левое тело, и — силы тяжести, действующие на левое и правое тело, соответственно. С направлением этих сил все понятно. Сила натяжения направлена вдоль нити, сила тяжести вертикально вниз, а сила реакции опоры перпендикулярно наклонной плоскости.

А вот с направлением силы трения придется разбираться отдельно. Поэтому на рисунке она изображена пунктирной линией и подписана со знаком вопроса. Интуитивно понятно, что если правый груз будет «перевешивать» левый, то сила трения будет направлена противоположно вектору . Наоборот, если левый груз будет «перевешивать» правый, то сила трения будет сонаправлена с вектором .

Правый груз тянет вниз сила Н. Здесь мы взяли ускорение свободного падения м/с 2 . Левый груз вниз тоже тянет сила тяжести, но не вся целиком, а только ее «часть», поскольку груз лежит на наклонной плоскости. Эта «часть» равна проекции силы тяжести на наклонную плоскости, то есть катету в прямоугольном треугольнике , изображенном на рисунке, то есть равна Н.

То есть «перевешивает» все-таки правый груз. Следовательно, сила трения направлена так, как показано на рисунке (мы ее нарисовали от центра масс тела, что возможно в случае, когда тело можно моделировать материальной точкой):

Второй важный вопрос, с которым нужно разобраться, будет ли вообще двигаться эта связанная система? Вдруг окажется так, что сила трения между левым грузом и наклонной плоскостью будет настолько велика, что не даст ему сдвинуться с места?

Такая ситуация будет возможна в том случае, когда максимальная сила трения, модуль которой определяется по формуле (здесь — коэффициент трения между грузом и наклонной плоскостью, — сила реакции опоры, действующая на груз со стороны наклонной плоскости), окажется больше той силы, которая старается привести систему с движение. То есть той самой «перевешивающей» силы, которая равна Н.

Модуль силы реакции опоры равен длине катета в треугольнике по 3-музакону Ньютона (с какой по величине силой груз давит на наклонную плоскость, с такой же по величине силой наклонная плоскость действует на груз). То есть сила реакции опоры равна Н. Тогда максимальная величина силы трения составляет Н, что меньше, чем величина «перевешивающей силы».

Следовательно, система будет двигаться, причем двигаться с ускорением. Изобразим на рисунке эти ускорения и оси координат, которые нам понадобятся далее при решении задачи:

Теперь, после тщательного анализа условия задачи, мы готовы приступить к ее решению.

Запишем 2-ой закон Ньютона для левого тела:

А в проекции на оси координатной системы получаем:

Здесь с минусом взяты проекции, векторы которых направлен против направления соответствующей оси координат. С плюсом взяты проекции, векторы которых сонаправлен с соответствующей осью координат.

Еще раз подробно объясним, как находить проекции и . Для этого рассмотрим прямоугольный треугольник , изображенный на рисунке. В этом треугольнике и . Также известно, что в этом прямоугольном треугольнике . Тогда и .

Вектор ускорения целиком лежит на оси , поэтому и . Как мы уже вспоминали выше, по определению модуль силы трения равен произведению коэффициента трения на модуль силы реакции опоры. Следовательно, . Тогда исходная система уравнений принимает вид:

Запишем теперь 2-ой закон Ньютона для правого тела:

В проекции на ось получаем.

На поверхности Земли сила тяжести (гравитация ) постоянна и равна произведению массы падающего тела на ускорение свободного падения: F g = mg

Следует заметить, что ускорение свободного падения величина постоянная: g=9,8 м/с 2 , и направлена к центру Земли. Исходя из этого можно сказать, что тела с разной массой будут падать на Землю одинаково быстро. Как же так? Если бросить с одинаковой высоты кусочек ваты и кирпич, то последний проделает свой путь до земли быстрее. Не забывайте о сопротивлении воздуха! Для ваты оно будет существенным, поскольку ее плотность очень мала. В безвоздушном пространстве кирпич и вата упадут одновременно.

Шар движется по наклонной плоскости длиной 10 метров, угол наклона плоскости 30°. Какова будет скорость шара в конце плоскости?

На шар действует только сила тяжести F g , направленная вниз перпендикулярно к основанию плоскости. Под действием этой силы (составляющей, направленной вдоль поверхности плоскости) шар будет двигаться. Чему будет равна составляющая силы тяжести, действующей вдоль наклонной плоскости?

Для определения составляющей необходимо знать угол между вектором силы F g и наклонной плоскостью.

Определить угол довольно просто:

  • сумма углов любого треугольника равна 180°;
  • угол между вектором силы F g и основанием наклонной плоскости равен 90°;
  • угол между наклонной плоскостью и ее основанием равен α

Исходя из вышесказанного, искомый угол будет равен: 180° - 90° - α = 90° - α

Из тригонометрии:

F g накл = F g ·cos(90°-α)

Sinα = cos(90°-α)

F g накл = F g ·sinα

Это действительно так:

  • при α=90° (вертикальная плоскость) F g накл = F g
  • при α=0° (горизонтальная плоскость) F g накл = 0

Определим ускорение шара из известной формулы:

F g ·sinα = m·a

A = F g ·sinα/m

A = m·g·sinα/m = g·sinα

Ускорение шара вдоль наклонной плоскости не зависит от массы шара, а только от угла наклона плоскости.

Определяем скорость шара в конце плоскости:

V 1 2 - V 0 2 = 2·a·s

(V 0 =0) - шар начинает движение с места

V 1 2 = √2·a·s

V = 2·g·sinα·S = √2·9,8·0,5·10 = √98 = 10 м/с

Обратите внимание на формулу! Скорость тела в конце наклонной плоскости будет зависеть только от угла наклона плоскости и ее длины.

В нашем случае скорость 10 м/с в конце плоскости будет иметь и бильярдный шар, и легковой автомобиль, и самосвал, и школьник на санках. Конечно же, трение мы не учитываем.

Тело массой 2 кг под действием силы F перемещается вверх по наклонной плоскости на расстояние расстояние тела от поверхности Земли при этом увеличивается на

Вектор силы F направлен параллельно наклонной плоскости, модуль силы F равен 30 Н. Какую работу при этом перемещении совершила сила тяжести? (Ответ дайте в джоулях.) Ускорение свободного падения примите равным коэффициент трения

Решение.

Работа силы определяется как скалярное произведение вектора силы и вектора перемещения тела. Следовательно, сила тяжести при подъеме тела вверх по наклонной плоскости совершила работу ( - угол при основании наклонной плоскости)

Ответ: −60.

Альтернативный способ решения.

Сила тяжести относится к типу сил, называемых потенциальными. Эти силы обладают таким свойством, что их работа по любому замкнутому пути всегда равна нулю (это можно считать определением). В качестве других примеров потенциальных сил можно упомянуть силу упругости, подчиняющуюся закону Гука кулоновскую силу взаимодействия зарядов силу всемирного тяготения (как обобщение простой силы тяжести) Примером непотенциальной силы, то есть не обладающей вышеописанным свойством, может служить, например, сила трения.

Как легко заметить, для всех сил, которые здесь названы потенциальными определена величина потенциальной энергии: - для силы тяжести, - для силы упругости, - для сил кулоновского взаимодействия, и, наконец, - для силы всемирного тяготения. Оказывается, что именно замечательное свойство потенциальных сил, легшее в основу их определения, и позволяется ввести для них понятия соответствующих потенциальных энергий. В общем случае это делается следующим образом. Пусть при переносе тела из точки 1 в точку 2 потенциальная сила совершила работу Тогда, по определению, говорят, что разность значений соответствующей потенциальной энергии в точках 2 и 1 равна Поскольку это определение содержит всегда только разность потенциальных энергий в двух точках, потенциальная энергия всегда оказывается определенной с точностью до константы. Это должен быть хорошо известный вам факт. Применим теперь это к данной задаче.

Нам требуется найти работу силы тяжести, для силы тяжести мы знаем, что такое потенциальная энергия. По выписанной ранее формуле получаем. Что искомая работа равна изменению потенциальной энергии тела, взятой со знаком минус. Высота тела над поверхностностью Земли увеличилась на следовательно, его энергия увеличилась на

А значит, работа силы тяжести равна

В качестве закрепления материала, предлагаю рассмотреть следующую задачу. С поверхности Земли стартует ракета массой Определите, какую работу совершит сила притяжения со стороны Земли к тому моменту, когда ракета будет находиться на расстоянии двух земных радиусов от центра Земли.

Решение.

Использовать в лоб формулу «» не удастся, поскольку сила притяжения уменьшается по мере удаления от Земли, единственный шанс применить эту формулу - начать интегрировать. Мы это оставим и попробуем ещё раз применить наши знания. Сила притяжения к Земле является потенциальной. Для неё мы знаем величину потенциальной энергии. Определим на сколько изменится потенциальная энергия ракеты.

Следовательно, сила притяжения совершила работу

Как и ожидалось, эта работа отрицательна.

Пример для самостоятельного разбора:

Пружина жесткостью 10 Н/м растянута на 5 см, какую работу совершит сила упругости при её растяжении ещё на 5 см?

Пусть небольшое тело находится на наклонной плоскости с углом наклона a (рис. 14.3,а ). Выясним: 1) чему равна сила трения, если тело скользит по наклонной плоскости; 2) чему равна сила трения, если тело лежит неподвижно; 3) при каком минимальном значении угла наклона a тело начинает соскальзывать с наклонной плоскости.

а) б)

Сила трения будет препятство­вать движению, следовательно, она будет направлена вверх по наклонной плоскости (рис. 14.3,б ). Кроме силы трения, на тело действуют еще сила тяжести и сила нормальной реакции . Введем систему координат ХОУ , как по­казано на рисунке, и найдем проекции всех указанных сил на коор­динатные оси:

Х : F трХ = –F тр, N X = 0, mg X = mg sina;

Y : F трY = 0, N Y = N , mg Y = –mg cosa.

Поскольку ускоряться тело может только по наклонной плоскости, то есть вдоль оси X , то очевидно, что проекция вектора ускорения на ось Y всегда будет равна нулю: а Y = 0, а значит, сумма проекций всех сил на ось Y также должна равняться нулю:

F трY + N Y + mg Y = 0 Þ 0 + N – mg cosa = 0 Þ

N = mg cosa. (14.4)

Тогда сила трения скольжения согласно формуле (14.3) равна:

F тр.ск = mN = mmg cosa. (14.5)

Если тело покоится , то сумма проекций всех сил, действующих на тело, на ось Х должна равняться нулю:

F трХ + N Х + mg Х = 0 Þ –F тр + 0 + mg sina = 0 Þ

F тр.п = mg sina. (14.6)

Если мы будем постепенно увеличивать угол наклона, то величина mg sina будет постепенно увеличиваться, а значит, будет уве­личиваться и сила трения покоя, которая всегда «автоматически подстраивается» под внешнее воздействие и компенсирует его.

Но, как мы знаем, «возможности» силы трения покоя не безгранич­ны. При каком-то угле a 0 весь «ресурс» силы трения покоя будет исчерпан: она достигнет своего максимального значения, равного силе трения скольжения. Тогда будет справедливо равенство:

F тр.ск = mg sina 0 .

Подставив в это равенство значение F тр.ск из формулы (14.5), получим: mmg cosa 0 = mg sina 0 .

Разделив обе части последнего равенства на mg cosa 0 , получим:

Þ a 0 = arctgm.

Итак, угол a, при котором начинается скольжение тела по наклонной плоскости, задается формулой:

a 0 = arctgm. (14.7)

Заметим, что если a = a 0 , то тело может или лежать неподвижно (если к нему не прикасаться), или скользить с постоянной скоростью вниз по наклонной плоскости (если его чуть-чуть толкнуть). Если a < a 0 , то тело «стабильно» неподвижно, и легкий толчок не произведет на него никакого «впечатления». А если a > a 0 , то тело будет соскальзывать с наклонной плоскости с ускорением и безо всяких толчков.

Задача 14.1. Человек везет двое связанных между собой саней (рис. 14.4,а ), прикладывая силу F под углом a к горизонту. Массы саней одинаковы и равны т . Коэффициент трения полозьев по снегу m. Найти ускорение саней и силу натяжения Т веревки между санями, а также силу F 1 , с которой должен тянуть веревку человек для того, чтобы сани двигались равномерно.

F a m m а) б) Рис. 14.4
а = ? Т = ? F 1 = ?

Решение . Запишем второй закон Ньютона для каждых саней в проекциях на оси х и у (рис. 14.4,б ):

I у : N 1 + F sina – mg = 0, (1)

x : F cosa – T – mN 1 = ma ; (2)

II у : N 2 – mg = 0, (3)

x : T – mN 2 = ma . (4)

Из (1) находим N 1 = mg – F sina, из (3) и (4) находим Т = mmg+ + ma. Подставляя эти значения N 1 и Т в (2), получаем

.

Подставляя а в (4), получаем

T = mN 2 + ma = mmg + та =

Mmg + т .

Чтобы найти F 1 , приравняем выражение для а к нулю:

Ответ : ; ;

.

СТОП! Решите самостоятельно: В1, В6, С3.

Задача 14.2. Два тела массами т и М связаны нитью, как показано на рис. 14.5,а . С каким ускорением движется тело М , если коэффициент трения о поверхность стола m. Каково натяжение нити Т ? Какова сила давления на ось блока?

т М m Решение. Запишем второй закон Ньютона в проекциях на оси х 1 и х 2 (рис. 14.5,б ), учитывая, что : х 1: Т – mMg = Ма , (1) х 2: mg – T = ma . (2) Решая систему уравнений (1) и (2), находим:
а = ? Т = ? R = ?

Если грузы не движутся, то .

Ответ : 1) если т < mМ , то а = 0, Т = mg , ; 2) если т ³ mМ , то , , .

СТОП! Решите самостоятельно: В9–В11, С5.

Задача 15.3. Два тела массами т 1 и т 2 связаны нитью, перекинутой через блок (рис. 14.6). Тело т 1 находится на наклонной плоскости с углом наклона a. Коэффициент трения о плоскость m. Тело массой т 2 висит на нити. Найти ускорение тел, силу натяжения нити и силу давления блока на ось при условии, когда т 2 < т 1 . Считать tga > m.

Рис. 14.7

Запишем второй закон Ньютона в проекциях на оси х 1 и х 2 , учитывая, что и :

х 1: т 1 g sina – Т – mm 1 g cosa = m 1 a ,

х 2: T – m 2 g = m 2 a .

, .

Так как а >0, то

Если неравенство (1) не выполняется, то груз т 2 точно не движется вверх! Тогда возможны еще два варианта: 1) система неподвижна; 2) груз т 2 движется вниз (а груз т 1 , соответственно, вверх).

Предположим, что груз т 2 движется вниз (рис. 14.8).

Рис. 14.8

Тогда уравнения второго закона Ньютона на оси х 1 и х 2 будут иметь вид:

х 1: Т – т 1 g sina mm 1 g cosa = m 1 a ,

х 2: m 2 g – Т = m 2 a .

Решая эту систему уравнений, находим:

, .

Так как а >0, то

Итак, если выполняется неравенство (1), то груз т 2 едет вверх, а если выполняется неравенство (2), то – вниз. Следовательно, если не выполняется ни одно из этих условий, т.е.

,

система неподвижна.

Осталось найти силу давления на ось блока (рис. 14.9). Силу давления на ось блока R в данном случае можно найти как диагональ ромба АВСD . Так как

ÐADC = 180° – 2 ,

где b = 90°– a, то по теореме косинусов

R 2 = .

Отсюда .

Ответ :

1) если , то , ;

2) если , то , ;

3) если , то а = 0; Т = т 2 g .

Во всех случаях .

СТОП! Решите самостоятельно: В13, В15.

Задача 14.4. На тележку массой М действует горизонтальная сила F (рис. 14.10,а ). Коэффициент трения между грузом т и тележкой равен m. Определить ускорение грузов. Какой должна быть минимальная сила F 0 , чтобы груз т начал скользить по тележке?

M , т F m а) б) Рис. 14.10
а 1 = ? а 2 = ? F 0 = ?

Решение . Сначала заметим, что сила, приводящая груз т в движение, – это сила трения покоя , с которой тележка действует на груз. Максимально возможное значение этой силы равно mmg .

По третьему закону Ньютона груз действует на тележку с такой же по величине силой – (рис. 14.10,б ). Проскальзывание начинается в тот момент, когда уже достигла своего максимального значения , но система еще движется как одно тело массой т +М с ускорением . Тогда по второму закону Ньютона

В нашем случае F н = m·g , т.к. поверхность горизонтальна. Но, нормальная сила по величине не всегда совпадает с силой тяжести.

Нормальная сила - сила взаимодействия поверхностей соприкасающихся тел, чем она больше - тем сильнее трение.

Нормальная сила и сила трения пропорциональны друг другу:

F тр = μF н

0 < μ < 1 - коэффициент трения, который характеризует шероховатость поверхностей.

При μ=0 трение отсутствует (идеализированный случай)

При μ=1 максимальная сила трения, равна нормальной силе.

Сила трения не зависит от площади соприкосновения двух поверхностей (если их массы не изменяются).

Обратите внимание: уравнение F тр = μF н не является соотношением между векторами, поскольку они направлены в разные стороны: нормальная сила перпендикулярна поверхности, а сила трения - параллельна.

1. Разновидности трения

Трение бывает двух видов: статическое и кинетическое .

Статическое трение (трение покоя ) действует между соприкасающимися телами, находящимися в покое друг относительно друга. Статическое трение проявляется на микроскопическом уровне.

Кинетическое трение (трение скольжения ) действует между соприкасающимися и движущимися друг относительно друга телами. Кинетическое трение проявляется на макроскопическом уровне.

Статическое трение больше кинетического для одних и тех же тел, или коэффициент трения покоя больше коэффициент трения скольжения.

Наверняка вам это известно из личного опыта: шкаф очень трудно сдвинуть с места, но поддерживать движение шкафа гораздо легче. Это объясняется тем, что при движении поверхности тел "не успевают" перейти на соприкосновения на микроскопическом уровне.

Задача №1: какая сила потребуется для поднятия шара массой 1 кг по наклонной плоскости, расположенной под углом α=30° к горизонту. Коэффициент трения μ = 0,1

Вычисляем составляющую силы тяжести. Для начала нам надо узнать угол между наклонной плоскостью и вектором силы тяжести. Подобную процедуру мы уже делали, рассматривая гравитацию. Но, повторение - мать учения:)

Сила тяжести направлена вертикально вниз. Сумма углов любого треугольника равна 180°. Рассмотрим треугольник, образованный тремя силами: вектором силы тяжести; наклонной плоскостью; основанием плоскости (на рисунке он выделен красным цветом).

Угол между вектором силы тяжести и основанием плоскость равен 90°.
Угол между наклонной плоскостью и ее основанием равен α

Поэтому, оставшийся угол - угол между наклонной плоскостью и вектором силы тяжести:

180° - 90° - α = 90° - α

Составляющие силы тяжести вдоль наклонной плоскости:

F g накл = F g cos(90° - α) = mgsinα

Необходимая сила для поднятия шара:

F = F g накл + F трения = mgsinα + F трения

Необходимо определить силу трения F тр . С учетом коэффициента трения покоя:

F трения = μF норм

Вычисляем нормальную силу F норм , которая равна составляющей силы тяжести, перпендикулярно направленной к наклонной плоскости. Мы уже знаем, что угол между вектором силы тяжести и наклонной плоскостью равен 90° - α.

F норм = mgsin(90° - α) = mgcosα
F = mgsinα + μmgcosα

F = 1·9,8·sin30° + 0,1·1·9,8·cos30° = 4,9 + 0,85 = 5,75 Н

Нам потребуется к шару приложить силу в 5,75 Н для того, чтобы закатить его на вершину наклонной плоскости.


Задача №2: определить как далеко прокатится шар массой m = 1 кг по горизонтальной плоскости, скатившись по наклонной плоскости длиной 10 метров при коэффициенте трения скольжения μ = 0,05

Силы, действующие на скатывающийся шар, приведены на рисунке.


Составляющая силы тяжести вдоль наклонной плоскости:

F g cos(90° - α) = mgsinα

Нормальная сила:

F н = mgsin(90° - α) = mgcos(90° - α)

Сила трения скольжения:

F трения = μF н = μmgsin(90° - α) = μmgcosα

Результирующая сила:

F = F g - F трения = mgsinα - μmgcosα

F = 1·9,8·sin30° - 0,05·1·9,8·0,87 = 4,5 Н

F = ma; a = F/m = 4,5/1 = 4,5 м/с 2

Определяем скорость шара в конце наклонной плоскости:

V 2 = 2as; V = &38730;2as = &38730;2·4,5·10 = 9,5 м/с

Шар заканчивает движение по наклонной плоскости и начинает движение по горизонтальной прямой со скоростью 9,5 м/с. Теперь в горизонтальном направлении на шар действует только сила трения, а составляющая силы тяжести равна нулю.

Суммарная сила:

F = μF н = μF g = μmg = 0,05·1·9,8 = -0,49 Н

Знак минус означает, что сила направлена в противоположную сторону от движения. Определяем ускорение замедления шара:

a = F/m = -0,49/1 = -0,49 м/с 2

Тормозной путь шара:

V 1 2 - V 0 2 = 2as; s = (V 1 2 - V 0 2)/2a

Поскольку мы определяем путь шара до полной остановки, то V 1 =0 :

s = (-V 0 2)/2a = (-9,5 2)/2·(-0,49) = 92 м

Наш шарик прокатился по прямой целых 92 метра!

Просмотров