Строение атома. Основные сведения о строении атома: характеристики, особенности и формула 1 строение атомов химических элементов

лабораторные работы

практические занятия

самостоятельная аудиторная работа

самостоятельная домашняя работа (типовой расчет)

контроль (защиты, коллоквиумы, зачет, экзамен)

Учебники и учебные пособия

Н.В.Коровин. Общая химия

Курс общей химии. Теория и задачи (под ред. Н.В.Коровина, Б.И.Адамсона)

Н.В.Коровин и др. Лабораторные работы по химии

Календарный план

Электролиты,

Хим.эквива

гидролиз, ПР

Электр.форму-

13(2 )

ГЭ, электролиз,

27(13,16)

14(2 )

коррозия

Квант.числа

17(2 )

18(2 )

Хим.связь

Комплексы

Термодинамика

Кинетика.

6(2,3 )

Равновесие

Введение в курс химии

Химия в энергетическом институте – фундаментальная общетеоретическая дисциплина.

Химия – естественная наука, изучающая состав, строение, свойства и превращения веществ, а также явления, сопровождающие эти превращения.

М.В.Ломоносов

Д.И.Менделеев

“Химическая

“Основах химии” 1871

рассматривает

свойства

г.) – “Химия –

изменения

учение об элементах и

объясняет

их соединениях”.

химических

превращениях происходит”.

«Золотой век химии» (конец XIX начало XX веков)

Периодический закон Д.И.Менделеева (1896)

Понятие о валентности введенное Э.Франкландом (1853)

Теория строения органических соединений А.М.Бутлерова (1861-1863)

Теория комплексных соединений А.Вернера

Закон действующих масс М.Гультберга и Л.Вааге

Термохимия, разработанная в основном Г.И.Гессом

Теория электролитической диссоциации С. Аррениуса

Принцип подвижного равновесия А.Ле Шателье

Правило фаз Дж.В.Гиббса

Теория сложного строения атома Бора-Зоммерфельда (1913-1916)

Значение современного этапа развития химии

Понимание законов химии и их применение позволяет создавать новые процессы, машины, установки и приборы.

Получение электроэнергии, топлива, металлов, различных материалов, продуктов питания и т.п. непосредственно связано с химическими реакциями. Например, электрическую и механическую энергии в настоящее время в основном получают преобразованием химической энергии природного топлива (реакции горения, взаимодействия воды и ее примесей с металлами и т.п.). Без понимания этих процессов невозможно обеспечить эффективную работу электростанций и двигателей внутреннего сгорания.

Познание химии необходимо для:

- формирования научного мировоззрения,

- для развития образного мышления,

- творческого роста будущих специалистов.

Современный этап развития химии характеризуется широким использованием квантовой (волновой) механики для интерпретации и расчета химических параметров веществ и систем веществ и основан на квантово-механической модели строения атома.

Атом - сложная электромагнитная микросистема, являющаяся носителем свойств химического элемента.

СТРОЕНИЕ АТОМА

Изотопы – разновидности атомов одного химического

элемента, имеющие одинаковый порядковый номер, но разные атомные числа

Мr (Cl)=35*0,7543 + 37*0,2457 = 35,491

Основные положения квантовой механики

Квантовая механика - поведение движущихся микрообъектов (в том числе и электронов) – это

одновременное проявление, как свойств частиц, так и свойств волн – двойственная (корпускулярноволновая) природа.

Квантование энергии: Макс Планк (1900 г., Германия) –

вещества испускают и поглощают энергию дискретными порциями (квантами). Энергия кванта пропорциональна частоте излучения (колебания) ν :

h – постоянная Планка (6,626·10-34 Дж·с); ν=с/λ , с – скорость света, λ – длина волны

Альберт Эйнштейн (1905 г.) : любое излучение - это поток квантов энергии (фотонов) E = m· v 2

Луи де Бройль (1924 г., Франция): электрон также характеризуется корпускулярно-волновой двойственностью - излучение распространяется как волна и состоит из мелких частиц (фотонов)

Частица – m,

mv , E =mv 2

Волна - ,

E 2 = h = hv /

Связал длину волны с массой и скоростью:

Е1 = Е2 ;

H/ mv

неопределенности

Вернер Гейзенберг (1927г.,

Германия)

произведение

неопределенностей

положения

(координаты)

частицы х и

импульса (mv) не

может быть

меньше h/2

х (mv) h/2 (- погрешность, неопределенность) Т.е. положение и импульс движения частицы принципиально невозможно определить в любой момент времени с абсолютной точностью.

Электронное облако Атомная орбиталь (АО)

Т.о. точное нахождение частицы (электрона) заменяется понятием статистической вероятности нахождения ее в определенном объеме (около ядерного) пространства.

Движение е- имеет волновой характер и описывается

2 dv - плотность вероятности нахождения е- в определенном объеме около ядерного пространства. Это пространство называется атомной орбиталью (АО) .

В 1926 г Шредингер предложил уравнение, которое математически описывает состояние е - в атоме. Решая его

находят волновую функцию . В простом случае она зависит от 3-х координат

Электрон несет отрицательный заряд, его орбиталь представляет собой определенное распределение заряда и называется электронное облако

КВАНТОВЫЕ ЧИСЛА

Введены для характеристики положения электрона в атоме в соответствии с уравнением Шредингера

1. Главное квантовое число (n )

Определяет энергию электрона - энергетический уровень

показывает размер электронного облака (орбитали)

принимает значения – от 1 до

n (номер энергетического уровня): 1 2 3 4 и т.д.

2. Орбитальное квантовое число (l ) :

определяет – орбитальный момент количества движения электрона

показывает – форму орбитали

принимает значения – от 0 до (n -1)

Графически АО изображается Орбитальное квантовое число: 0 1 2 3 4

Энергетический подуровень: s p d f g

Е увеличивается

l =0

s –подуровень s –АО

p- подуровень р -АО

Каждому n соответствует определенное число значений l , т.е. каждый энергетический уровень расщепляется на подуровни. Число подуровней равно номеру уровня.

1-ый энерг.уровень → 1 подуровень → 1s 2-ой энерг.уровень → 2 подуровня → 2s2p 3-ий энерг.уровень → 3 подуровня → 3s 3p 3d

4-ый энерг.уровень → 4 подуровня → 4s 4p 4d 4f и т.д.

3. Магнитное квантовое число (m l )

определяет – значение проекции орбитального момента количества движения электрона на произвольно выделенную ось

показывает – пространственную ориентацию АО

принимает значения – от –l до + l

Любому значению l соответствует (2l +1) значений магнитного квантового числа, т.е. (2l +1) возможных расположений электронного облака данного типа в пространстве.

s - состояние – одна орбиталь (2 0+1=1) - m l = 0, т.к. l = 0

p - состояние – три орбитали (2 1+1=3)

m l : +1 0 -1, т.к. l =1

ml =+1

m l =0

m l = -1

Все орбитали, принадлежащие одному подуровню, имеют одинаковую энергию и называются вырожденными.

Вывод: АО характеризуется определенным набором n, l, m l , т.е. определенными размерами, формой и ориентацией в пространстве.

4. Cпиновое квантовое число (m s )

«спин» - «веретено»

определяет - собственный механический момент электрона, связанный с вращением его вокруг своей оси

принимает значения – (-1/2· h/2) или (+1/2· h/2)

n = 3

l = 1

m l = -1, 0, +1

m s = + 1/2

Принципы и правила

Электронные конфигурации атомов

(в виде формул электронных конфигураций)

Указывают цифрами номер энергетического уровня

Указывают буквами энергетический подуровень (s, p, d, f );

Показатель степени подуровня означает число

электронов на данном подуровне

19 К 1s2 2s2 2p 6 3s 2 3p 6 4s 1

минимальной

Электроны в атоме занимают наиболее низкое энергетическое состояние, отвечающее наиболее устойчивому его состоянию.

1s 2s 2 p 3 s 3 p 3 d 4 s 4 p 4 d 4 f

Увеличение Е

Клечковского

Электроны размещаются последовательно на орбиталях, характеризуемых возрастанием суммы главного и орбитального квантовых чисел (n+l) ; при одинаковых значениях этой суммы раньше заполняется орбиталь с меньшим значением главного квантового числа n

1 s <2 s < 2 p = 3 s < 3 p = 4 s < 3 d = 4 p и т. д

Транскрипт

1 СТРОЕНИЕ АТОМА Лекция 1

2 Атом сложная устойчивая микросистема элементарных частиц, состоящая из положительно заряженного ядра и электронов, движущихся в околоядерном пространстве.

3 МОДЕЛИ СТРОЕНИЯ АТОМА 1904 г. Томсон, Модель строения атома «Пудинг с изюмом» Джозеф Джон ТОМСОН

4 ИССЛЕДОВАНИЯ РЕЗЕРФОРДА

5 МОДЕЛИ СТРОЕНИЯ АТОМА 1911 г. Резерфорд, «Планетарная модель» строения атома Эрнест РЕЗЕРФОРД

6 МОДЕЛИ СТРОЕНИЯ АТОМА 1913 г. Бор, Квантовая теория Нильс БОР

7 КВАНТОВАЯ МЕХАНИКА Квантовая теория (М. Планк, 1900). Корпускулярноволновой дуализм электрона (Л. де Бройль, 1914). Принцип неопределенности (В. Гейзенберг, 1925).

8 Ядро атома состоит из протонов и нейтронов. Число протонов в ядре равно атомному номеру элемента и числу электронов в атоме. Атом электронейтральная частица.

10 СВОЙСТВА ЭЛЕМЕНТАРНЫХ ЧАСТИЦ Частица Положение Заряд Масса Протон (p) Ядро +1 1,00728 Нейтрон (n) Ядро 0 1,00867 Электрон (е) Оболочка -1 0,00055

11 A = Z + N A относительная атомная масса Z заряд ядра (число протонов, порядковый номер элемента) N число нейтронов А Э Z Cl (75,43%) Cl (24,57%) 35 75,57 A r = = 35,

12 УРАВНЕНИЕ ШРЁДИНГЕРА Эрвин Шрёдингер 1926 г., уравнение волновой функции движения электрона

13 КВАНТОВЫЕ ЧИСЛА Следствием решения уравнения Шрёдингера являются квантовые числа. С помощью квантовых чисел можно описать электронное строение любого атома, а также определить положение любого из электронов в атоме.

14 КВАНТОВЫЕ ЧИСЛА n - главное квантовое число - определяет энергию электрона в атоме; - принимает значения 1, 2, 3,..., ; - соответствует номеру периода. Совокупность электронов в атоме с одинаковым значением n энергетический уровень. Обозначают уровни: К, L, M, N...

15 КВАНТОВЫЕ ЧИСЛА Орбитальное квантовое число (l) - определяет энергию электрона - определяет геометрическую форму орбитали - принимает значения от 0 до (n 1) Значение l Обозначение l s p d f g h

16 Совокупность электронов в атоме с одинаковым значением l энергетический подуровень. при n = 1 l = 0 при n = 2 l = 0, 1 при n = 3 l = 0, 1, 2 Т.о., каждый уровень, кроме первого, расщеплён на подуровни.

18 В зависимости от значения l различается форма АО. Форма s-ао: Форма р-ао: Форма d-ао:

19 Магнитное квантовое число (m l) - характеризует пространственную ориентацию атомных орбиталей - значения от + l через 0 до l - указывает на число АО на энергетическом подуровне - на одном подуровне может находиться (2l + 1) АО - все АО одного подуровня имеют одинаковую энергию

20 Значения l Значения m l Число АО 0 s p +1, 0, d +2, +1, 0, -1, f +3, +2, +1, 0, -1, -2, -3 7

21 Ориентация атомных орбиталей в пространстве

23 Спиновое квантовое число (m s) характеризует, условно, собственный момент движения электрона принимает значения: +1/2 и -1/2

24 ПРИНЦИПЫ ЗАПОЛНЕНИЯ ЭЛЕКТРОНАМИ АТОМНЫХ ОРБИТАЛЕЙ Принцип наименьшей энергии Электрон в атоме в первую очередь стремиться занять энергетический уровень и подуровень с наименьшей энергией. Правила Клечковского 1 правило. Электрон в атоме в первую очередь занимает подуровень с наименьшим значением (n + l). 2 правило. При равенстве суммы (n + l) двух подуровней, электрон занимает подуровень с наименьшим значением n.

25 ПРАВИЛА КЛЕЧКОВСКОГО

26 ПРИНЦИПЫ ЗАПОЛНЕНИЯ ЭЛЕКТРОНАМИ АТОМНЫХ ОРБИТАЛЕЙ Принцип Паули В атоме не может быть даже двух электронов с одинаковым набором четырёх квантовых чисел. Следствие: на одной атомной орбитали может располагаться не более двух электронов с антипараллельными спинами. Максимальная ёмкость: атомной орбитали 2 электрона подуровня 2(2 l + 1) электронов уровня 2n 2 электронов

27 ПРИНЦИПЫ ЗАПОЛНЕНИЯ ЭЛЕКТРОНАМИ АТОМНЫХ ОРБИТАЛЕЙ Правило Гунда При прочих равных условиях суммарный спин системы должен быть максимальным. m s = +1/2 + 1/2 + 1/2 = 3/2 m s = +1/2 + 1/2-1/2 = 1/2 m s = +1/2-1/2 + 1/2 = 1/2

28 ЭЛЕКТРОННЫЕ ФОРМУЛЫ Полная электронная формула отражает порядок заполнения электронами атомных орбиталей, уровней и подуровней. Например: 32 Ge 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 2. Краткая электронная формула позволяет сократить написание полной электронной формулы: 32Ge 4s 2 3d 10 4p 2. Электронная формула валентных электронов записывается только для электронов, которые могут принимать участие в образовании химических связей: 32Ge 4s 2 4p 2

29 ЭЛЕКТРОНОГРАФИЧЕСКАЯ ФОРМУЛА показывает расположение электронов на атомных орбиталях: 4s 4p 32Ge Характеристика электронов 4 квантовыми числами: n = 4 m l = 0 l = 1 m s = +1/2

30 ВАЛЕНТНЫЕ ЭЛЕКТРОНЫ Семейство элементов s элементы р элементы d элементы Валентные электроны ns ns np ns (n-1)d Например: s-элемент Ba 6s 2 р-элемент As 4s 2 4p 3 d-элемент Nb 5s 2 4d 3

31 Явление «провала» электронов Атом стремится перейти в состояние с устойчивой электронной конфигурацией. Повышенной устойчивостью обладают полностью или наполовину заполненные электронами подуровни: р 3 и р 6, d 5 и d 10, f 7 и f 14. Элемент Каноническая Реальная формула формула Cr 4s 2 3d 4 4s 1 3d 5 Pd [Кr]5s 2 4d 8 [Кr]5s 0 4d 10 Cu 4s 2 3d 9 4s 1 3d 10

32 ПЕРИОДИЧЕСКИЙ ЗАКОН ПЕРИОДИЧЕСКОЕ ИЗМЕНЕНИЕ СВОЙСТВ ХИМИЧЕСКИХ ЭЛЕМЕНТОВ

33 Периодический закон и Периодическая система Д.И. Менделеева Периодический закон открыт Д.И. Менделеевым в 1869 г. Первоначальная формулировка Свойства элементов, а также образуемых ими простых и сложных веществ, находятся в периодической зависимости от атомных масс элементов.

34 Периодический закон и Периодическая система Д.И. Менделеева Достижения систематики Д.И.Менделеева 1. Впервые элементы расположены в виде периодов (рядов) и групп. 2. Предложено заново определить атомные массы некоторых элементов (Cr, In, Pt, Au). 3. Предсказано открытие новых элементов и описаны их свойства: Экаалюминий галлий, открыт в 1875 г. Экабор скандий, открыт в 1879 г. Экасилиций германий, открыт в 1886 г.

35 Периодический закон и Периодическая система Д.И. Менделеева Несоответствие атомных масс некоторых элементов порядку их следования в ПС А(18 Ar) = 40 а.е.м. А(119 К) = 39 а.е.м. А(27 Со) = 58,9 а.е.м. А(28 Ni) = 58,7 а.е.м. Современная формулировка закона свойства элементов, а также образуемых ими простых и сложных веществ, находятся в периодической зависимости от заряда ядер их атомов.

36 Короткопериодная периодическая система

37 Полудлиннопериодная периодическая система

38 Периодический закон и Периодическая система Д.И. Менделеева Период это горизонтальная последовательность химических элементов, атомы которых имеют равное число энергетических уровней, частично или полностью заполненных электронами. Группа это вертикальная последовательность элементов, обладающих однотипной электронной структурой атомов, равным числом внешних электронов, одинаковой максимальной валентностью и сходными химическими свойствами.

39 Закономерности изменения радиусов атомов По группам (главным подгруппам) сверху вниз радиусы атомов увеличиваются, так как возрастает число заполненных электронами энергетических уровней. В периоде слева направо радиусы атомов уменьшаются: при увеличении заряда ядра увеличиваются силы притяжения электронов. Этот эффект называется «сжатие».

40 Закономерности изменения радиусов атомов

41 Энергия ионизации Энергия ионизации это энергия, которую нужно затратить для отрыва е от атома. А + E ион = А + + e Обозначается E ион Измеряется в кдж/моль или в эв 1 эв = 96,49 кдж/моль Энергия ионизации тем меньше, чем больше радиус атома.

42 Энергия ионизации

43 Энергия сродства к электрону энергия, которая выделяется при присоединении электрона к нейтральному атому. Обозначается E ср, кдж/моль или эв Для присоединения е к атомам Не, Be, N, Ne необходимо энергию затратить. Присоединение электрона к атомам F, O, C, Li, H сопровождается выделением энергии.

44 Электроотрицательность Характеризует способность атома притягивать электрон. Рассчитывается как полусумма энергии ионизации и энергии сродства к электрону. = ½ (Е ион + Е ср) Фтор характеризуется самым большим значением ЭО, а щелочные металлы - самыми низкими значениями.

45 Электроотрицательность

46 Стехиометрическая валентность

47 Периодические свойства соединений - основно-кислотные свойства оксидов и гидроксидов; - окислительная способность простых веществ и однотипных соединений; - у однотипных солей в периодах уменьшается термическая устойчивость и возрастает их склонность к гидролизу, а в группах наблюдается обратное.


Лекция 1. Строение атома. Периодический закон Лектор: асс. каф. ОХХТ Абрамова Полина Владимировна еmail: [email protected] «Атомы бесчисленны по величине и многообразию, носятся они во Вселенной, кружась

СТРОЕНИЕ АТОМА Лекция 2, 3 Основные открытия на рубеже XIX XX веков Атомные спектры (1859 г., Кирхгофф) Фотоэффект (1888 г., Столетов) Катодные лучи (1859 г., Перрен) Рентгеновское излучение (1895 г.)

СТРОЕНИЕ АТОМА Основные открытия на рубеже XIX XX веков Атомные спектры (1859 г., Кирхгофф) Фотоэффект (1888 г., Столетов) Катодные лучи (1859 г., Перрен) Рентгеновское излучение (1895 г., В.К.Рентген)

«Строение атома» Лекция 2 Дисциплина «Общая неорганическая химия» для студентов очного отделения Лектор: к.т.н., Мачехина Ксения Игоревна * План лекции 1. Экспериментальные основы теории строения атома.

Химия 1.2 Лекция 2. Строение атома. Периодический закон Лектор: асс. каф. ОХХТ к.х.н. Абрамова Полина Владимировна еmail: [email protected] «Атомы бесчисленны по величине и многообразию, носятся они во Вселенной,

Электронное строение атома Лекция 9 Атом химически неделимая электронейтральная частица Атом состоит из атомного ядра и электронов Атомное ядро образовано нуклонами протонами и нейтронами Частица Символ

ПЗ и ПС Д.И. Менделеева в свете квантово-механической теории строения атома. Современные представления о природе химической связи и строении молекул. . Современная модель строения атома.. Характеристика

Лекция 5 Электронная структура атома Основные понятия и законы: атом, электрон, ядро, протон, нейтрон; заряд ядра; квантовые числа электронов в атоме; энергетический уровень и подуровень, электронная оболочка,

Повторение 1 занятия, разбор домашнего задания Периодическая таблица Д. И. Менделеева Закономерности изменения химических свойств элементов и их соединений по периодам и группам Общая характеристика металлов

3. ПЕРИОДИЧЕСКИЙ ЗАКОН. СТРОЕНИЕ АТОМА 3.1.Периодический закон и периодическая система элементов Д.И. Менделеева 1. Прочитайте текст в учебнике (стр. 66-67). 2. Найдите правильный ответ и закончите предложения.

ФИЗИЧЕСКОЕ МАТЕРИАЛОВЕДЕНИЕ 1 ЛЕКЦИЯ 2 СТРОЕНИЕ ГАЗОВ, ЖИДКИХ И ТВЕРДЫХ ТЕЛ Строение атомов. Квантово-механическая модель атомов. Строение многоэлектронных атомов Периодическая система элементов Квантовые

Организационная часть Строение атома Строение электронных оболочек Принципы заполнения АО Решение типовых заданий А1 Расписание и структура занятий Вебинары проводятся раз в неделю по воскресеньям в 14.00

Лекция 9 (часа) СТРОЕНИЕ АТОМОВ. КВАНТОВЫЕ ЧИСЛА Современное представление о строении атомов химических элементов сводится к следующим положениям: 1. Атом состоит из ядра и электронов.. Ядро заряжено

Строение атома и химические свойства Тема 5 Строение атома Ядро и электронная оболочка Ядро протоны (p +) и нейтроны (n 0) Квантовые числа n главное (энергетическое) l побочное (орбитальное) m магнитное

ПЕРИОДИЧЕСКИЙ ЗАКОН (ПЗ) И ПЕРИОДИЧЕСКАЯ СИСТЕМА (ПС) ХИМИЧЕСКИХ ЭЛЕМЕНТОВ Д.И. МЕНДЕЛЕЕВА ПС элементов была предложена выдающимся русским химиком Д.И. Менделеевым в 1869 году ПЕРИОДИЧЕСКИЙ ЗАКОН Свойства

Строение атома и химические свойства Тема 5 1 Строение атома Ядро и электронная оболочка Ядро протоны (p +) и нейтроны (n 0) 2 Этапы создания современной модели строения атома "Ультрафиолетовая катастрофа"

Строение атома. Периодический закон. Для 8 класс добавления текста щѐлкните мышью Вставь пропущенные слова. Вопрос 1 Химический элемент это.... Химический элемент это определѐнный вид атомов. Вопрос 2

Методика изучения темы Строение атома и систематизация химических 1.Значение темы. элементов. М. В. Зенькова План изучения темы. 2. Задачи: образовательные, воспитательные, развивающие. 3.Планирование.

СТРОЕНИЕ АТОМА Развитие представлений о строении атома Долгое время в науке существовало мнение о том, что атомы неделимы. Также считалось, что атомы неизменны, т.е. атом одного элемента не может превратиться

Строение атома План лекции 1. Экспериментальная основа теории 2. Квантовые числа 3. Принципы построения и способы изображения электронных структур 4. Строение атома и периодическая система элементов Экспериментальная

ВАРИАНТ 1 1. Указать для каждого из нижеприведенных изотопов: 4 He 2 а) общее число протонов и нейтронов; б) число протонов; в) число электронов., 3 H 1, 56 25 Mn, 209 83 Bi 2. В природе таллий содержится

Лекция - Периодический закон и периодическая система химических элементов в свете теории строения атома. (составитель - Канева Любовь Ивановна) 1 марта 1869г. Формулировка периодического закона Д.И. Менделеева.

Лекция 3 3. Строение электронной оболочки многоэлектронных атомов. Так как при химических реакциях ядра реагирующих атомов остаются без изменения, то физические и химические свойства атомов зависят, прежде

1. Распространенные элементы. строение атомов. Электронные оболочки. Орбитали Химический элемент определенный вид атомов, обозначаемый названием и символом и характеризуемый порядковым номером и относительной

Состояние электрона в атоме, как и других микрочастиц, описывается основными положениями квантовой механики. Электрон, согласно квантово - механическим представлениям, является частицей, так как имеет

ЛЕКЦИЯ 3 Структура ПС. 3.1. Строение атомов и Периодическая система Д.И.Менделеева. Типы ПС: 8-клеточная (короткопериодная), полудлинный вариант, длинный вариант Период и группа: -главная (s,p) -побочная

Задания А2 по химии 1. В ряду элементов уменьшаются радиусы атомов уменьшается число протонов в ядрах атомов увеличивается число электронных слоёв в атомах уменьшается высшая степень окисления атомов У

Лекция 10. Свойства многоэлектронных атомов. 10.1. Энергетические уровни. Хартри-фоковские расчеты атомов и анализ атомных спектров показывают, что орбитальные энергии ε i зависят не только от главного

СТРОЕНИЕ АТОМА Экспериментальные доказательства сложной структуры атома Фотоэффект- испускание электронов веществом под действием электромагнитного излучения Г.ГЕРЦ, 1887 А.Г.СТОЛЕТОВ, 1888 Катодные лучи

1. ПРОТОННО-НЕЙТРОННАЯ ТЕОРИЯ СТРОЕНИЯ АТОМНОГО ЯДРА. ИЗОТОПЫ, ИЗОБАРЫ. Атом любого элемента состоит из ядра, имеющего положительный заряд Z, в пространстве вокруг которого находится Z электронов. Ядро

1 Лекция 4. Периодический закон и периодическая система элементов Д.И.Менделеева 4.1. Периодический закон Д.И.Менделеева Открытие периодического закона и разработка периодической системы химических элементов

ПЕРИОДИЧЕСКИЙ ЗАКОН И ПЕРИОДИЧЕСКАЯ СИСТЕМА ЭЛЕМЕНТОВ Д.И. МЕНДЕЛЕЕВА Формулировка периодического закона Д.И. Менделеева: свойства простых веществ, а также формы и свойства соединений элементов находятся

8класс Химия база. Тренажер тема: Строение атома. Состав ядра атома. Изотопы. Задание 1 Общий список заданий Кто предложил планетарную модель строения атома? 1) Менделеев 2) Резерфорд 3) Ломоносов 4) Кюри

Слайд 1 Строение атома Слайд 2 План 1. Экспериментальные основы теории 2. Корпускулярно-волновое описание электрона. Квантовые числа 3. Принципы построения и способы изображения электронных структур 4.

Лекция 6 ПЕРИОДИЧЕСКИЙ ЗАКОН Основные понятия и законы: периодический закон; периодическая система элементов, период, ряд, группа, подгруппа; полные и неполные электронные аналоги; высшая, низшая и промежуточная

Периодический закон История создания периодической системы В истории каждого научного открытия можно определить два основных этапа: 1) установление частных закономерностей; 2) сам факт открытия и признания

Строение атома Периодический закон Афонина Любовь Игоревна, канд. хим. наук, доцент кафедры химии, НГТУ, научный сотрудник ИХТТМ СО РАН IV-III века до н.э. древнегреческие философы-материалисты Левкипп,

ЗАНЯТИЕ 1 Строение атома. Периодический закон. Химическая связь. Электроотрицательность. Степень окисления. Валентность. Абдульмянов А.Р. КАЛЕНДАРЬ ЗАНЯТИЙ О САЙТЕ О САЙТЕ ГРУППА ВКОНТАКТЕ https://vk.com/ssau_chem

УДК 373.167.1:54 ББК 24я72 С 59 Рецензент: Д. Ю. Добротин старший научный сотрудник лаборатории дидактики химии ИСМО РАО, кандидат педагогических наук С 59 Соколова И. А. ГИА 2013. Химия. Сборник заданий.

Строение атома и Периодический закон доц. Сильвестрова И.Г. Каф. химии МГАВМиБ Cтроение атома. Периодический закон. Состав атомов. Двойственная природа электрона. Квантовые числа. Электронная конфигурация

Многоэлектронные атомы 1 1 Принцип неразличимости тождественных частиц Принцип Паули 3 Периодическая система элементов Д И Менделеева 1 Принцип неразличимости тождественных частиц В квантовой механике

СТРОЕНИЕ АТОМА Дегтярёва М.О. ЛНИП ИСТОРИЧЕСКАЯ СПРАВКА слово "атом" (греч. «неделимый») появилось еще в сочинениях древнегреческих философов философы объясняли, что дробление вещества не может происходить

Тема 1. Атомно-молекулярное учение и стехиометрия Вариант контроля 1. Какая формула выражает закон эквивалентов? 1) Ar M э = 2) m PV B = M RT 3) m m 1 2 M э1 = 4) m = n M M э2 2. В каком соединении эквивалент

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ КАЗАНСКИЙ ГОСУДАРСТВЕННЫЙ АРХИТЕКТУРНО- СТРОИТЕЛЬНЫЙ УНИВЕРСИТЕТ КАФЕДРА ХИМИИ И ИНЖЕНЕРНОЙ ЭКОЛОГИИ В СТРОИТЕЛЬСТВЕ СТРОЕНИЕ АТОМА МЕТОДИЧЕСКИЕ УКАЗАНИЯ

ЛЕКЦИЯ 4 Строение вещества Строение вещества учение о том, какие силы определяют его состав и структуру. В случае химии состав и структура определяются на уровне атомов и молекул, а действующие силы обусловлены

Электронное строение атомов и Периодическая система элементов Атомы есть! атомы на подложке Ионная Микроскопия решетка графит Сканирующая Зондовая Микроскопия Просвечивающая Электронная Микроскопия Cложности

ЭФФЕКТИВНАЯ ПОДГОТОВКА К ОГЭ 9 КЛАСС ОГЭ 2017 И. А. Соколова ХИМИЯ СБОРНИК ЗАДАНИЙ МОСКВА 2016 ГАРАНТИЯ КАЧЕСТВА А ОГЭ!** ОЛУЧИ ОГЭ! НА БАЛЛ ВЫСШИЙ ППОЛУЧИ ОЛУЧИ ВЫСШИЙ БАЛЛ НА ОГЭ! * * УДК 373:54 ББК

Строение атома 1. Атомное ядро. Атом мельчайшая, электронейтральная, химически неделимая частица вещества, состоящая из положительно заряженного ядра и отрицательно заряженной электронной оболочки. Электронная

УДК 54.02 ББК 24.1 Д36 Д36 Дерябина Н.Е. Строение. Системно-деятельностный подход к методике преподавания. - М.: ИПО «У Никитских ворот», 2011, - 40 с.: ил. ISBN 978-5-91366-225-5 Пособие содержит учебный

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «САРАТОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ

Лекция 13. Многоэлектронный атом. Периодическая система Д.И. Менделеева 1 Многоэлектронный атом Рассмотрим многоэлектронный атом. Для описания взаимодействия в такой системе необходимо использовать второе

Структура периодической таблицы Д.И.Менделеева. Современная формулировка периодического закона 1 марта 1869 г Дмитрий Иванович Менделеев предложил свой вариант классификации элементов, который стал прообразом

Строение атома Модель атома Томсона Джозеф Джон Томсон - выдающийся ученый, директор знаменитой Кавендишской лаборатории, лауреат Нобелевской премии, открыл электрон. 1903 году выдвинул гипотезу: электрон

Основные сведения о строении атома В результате химических реакций атомы не разрушаются, а лишь перегруппировываются: из атомов исходных веществ образуются новые комбинации тех же атомов, но уже в составе

Тренировочная работа по химии для учащихся 11 класса Автор учитель химии МБОУ СОШ 89 Кашкарова С.А. Тема: «ЗАКОНОМЕРНОСТИ ИЗМЕНЕНИЯ ХИМИЧЕСКИХ СВОЙСТВ ЭЛЕМЕНТОВ И ИХ СОЕДИНЕНИЙ ПО ПЕРИОДАМ» КРАТКИЙ СПРАВОЧНИК

Магнитный момент атома. Атом в магнитном поле. Момент импульса в квантовой механике Полный момент импульса: Проекция момента на ось z: Проекции момента на оси x иy не определены. Результирующий момент

ОБЛАСТНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕСРЕДНЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «СМОЛЕНСКИЙ АВТОТРАНСПОРТНЫЙ КОЛЛЕДЖ имени Е. Г. Трубицына» Методическое пособие для самостоятельного

Атомы. Вещества. Реакции ОСНОВНЫЕ СВЕДЕНИЯ О СТРОЕНИИ АТОМА Понятие «атом» пришло к нам из античности, но первоначальный смысл, который вкладывали в это понятие древние греки, совершенно изменился. В переводе

Квантовые числа. Состав атомного ядра Лекция 15-16 Постникова Екатерина Ивановна, доцент кафедры экспериментальной физики Квантовые числа Уравнению Шрёдингера удовлетворяют собственные функции r, которые

СТРОЕНИЕ АТОМА 1. Основные сведения о строении атома Мир элементарных частиц разнообразен. Электрон занимает в нём особое место. С его открытия начинается век атомной физики. Изучение свойств электронов

Полный механический момент многоэлектронного атома. Правила Хунда. Принцип Паули. Таблица Менделеева. Момент импульса в квантовой механике Полный момент импульса: Проекция момента на ось z: Проекции момента

Тест «Строение атома. Характеристика химического элемента на основании его положения в периодической системе» 1. Заряд ядра атома равен числу 1) протонов 2) электронов во внешнем электронном слое 3) нейтронов

МОСКОВСКИЙ АВТОМОБИЛЬНО-ДОРОЖНЫЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ (МАДИ) СТРОЕНИЕ АТОМА И ХИМИЧЕСКАЯ СВЯЗЬ УЧЕБНОЕ ПОСОБИЕ МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ

ОСНОВЫ СПЕКТРОСКОПИИ к.ф.-м.н., доцент кафедры ФиОИ Возианова А.В. 23.04.2016 Лекция 7 Электронные оболочки и слои и их заполнение 2 Электронный слои, оболочки и их заполнение Электроны с заданным значением

Содержание 1. Общая химия....................8 1.1. Основные химические понятия....8 Основные понятия................8 Основные законы................10 Современные представления о строении атома................12

СОДЕРЖАНИЕ 1. ВЕщЕстВо 1.1. строение атома. строение электронных оболочек атомов первых 20-ти элементов периодической системы Д. И. Менделеева... 5 1.1.1. Строение атома... 5 1.1.2. Массовое число... 6

СОВРЕМЕННАЯ МОДЕЛЬ СОСТОЯНИЯ ЭЛЕКТРОНА В АТОМЕ Изучение радиоактивности началось в 1896 г., француз Беккерель изучал соедения урана, 1898 г. открытие Б и М. Кюри полония и радия. Исследованиями супругов

АТОМНЫЕ СИСТЕМЫ СО МНОГИМИ ЭЛЕКТРОНАМИ Принцип неразличимости тождественных частиц. Классическая механика оперирует индивидуализированными объектами (частицами). Даже если свойства двух частиц полностью

МИНИСТЕРСТВО СЕЛЬСКОГО ХОЗЯЙСТВА И ПРОДОВОЛЬСТВИЯ РЕСПУБЛИКИ БЕЛАРУСЬ УЧРЕЖДЕНИЕ ОБРАЗОВАНИЯ «ГРОДНЕНСКИЙ ГОСУДАРСТВЕННЫЙ АГРАРНЫЙ УНИВЕРСИТЕТ» Кафедра химии ОБЩАЯ ХИМИЯ ЛЕКЦИЯ: СТРОЕНИЕ АТОМОВ ЭЛЕМЕНТОВ

2. Периодический закон и периодическая система элементов Д.И. Менделеева Периодический закон в формулировке Д.И. Менделеева: свойства простых тел, а также формы и свойства соединений элементов находятся

Тема – 1: Строение атома. Заряд ядра, порядковый номер и масса атома.

Студент должен:

Знать:

· Современную формулировку периодического закона и строение таблицы

Уметь:

· Определять элементы по описанным свойствам, определять элемент по электронной формуле.

· Устанавливать по порядковому номеру элемента номер периода и номер группы, в которых он находится, а также формулы и характер высшего оксида и соответсующего ему гидрооксида.

· Записывать электронную формулу данного элемента и сравнивать с окружающими его элементами в периоде и группе.

1.1. Порядковый номер химического элемента и значение заряда ядра его атома. Изотопы

Классифицируя химические элементы, использовал два их признака: а) относительную атомную массу б) свойства простых веществ и соединений элементов.

Первый признак – ведущий, второй – проявляется связанно с первым: свойства элементов изменяются периодически с возрастанием относительной атомной массы.

Но при построении периодической системы, располагая химические элементы по возрастанию относительной атомной массы, в некоторых местах нарушил это правило: поменял кобальт и никель, теллур и йод. Позднее так же пришлось поступить еще с двумя парами химических элементов: аргон – калий и торий – протактиний. Ведь активный щелочной метал калий нельзя включить в семейство химически устойчивых инертных газов, которые или вовсе не образуют химических соединений (гелий, неон), или вступают в реакции с трудом.

не мог объяснить эти исключения из общего правила, так же, как и причину периодичности в изменении свойств химических элементов, расположенных по возрастанию относительной атомной массы.

В XX в. Ученые установили, что атом состоит из ядра и движущихся около него электронов. Движущиеся вокруг ядра электроны образуют электронную оболочку атома. Атом – электро – нейтральная частица, т. е. не имеющая заряда. Ядро же заряжено положительно, и его заряд нейтрализуется суммарным отрицательным зарядом всех электронов в атоме. Например, если ядро атома имеет заряд +4, то вокруг него движутся четыре электрона, каждый из которых имеет заряд, равный -1.

Экспериментально было установлено, что порядковые номера элементов в периодической системе совпадают со значениями зарядов ядер их атомов. Заряд ядра атома водорода равен +1, гелия +2, лития +3 ит. д. Положительный заряд атома у каждого последующего элемента на единицу больше, чем у предыдущего, и в его электронной оболочке на один электрон больше.

Порядковый (атомный) номер химического элемента численно равен заряду его атома.

С тех пор как ученые выявили физический смысл порядкового номера элемента, периодический закон формулируется так: свойства простых веществ, а также состав и свойства соединений химических элементов находятся в периодической зависимости от заряда ядра атомов.

Как можно объяснить, почему значения зарядов ядер атомов химических элементов в периодической системе возрастают, а правильная последовательность увеличения относительной атомной массы в ряде случаев нарушается? Для ответа на этот вопрос надо привлечь сведения о составе атомных ядер, известные вам из курса физики.

Ядра атомов заряжены положительно, так как в их состав входят протоны. Протон – это частица с зарядом +1 и относительной массой, равной 1. Ядро атома водорода имеющего относительную атомную массу, равную 1,- это протон. В ядре гелия два протона, но относительная атомная масса гелия равна 4. Это связано с тем, что в ядро атома гелия входят не только протоны, но и нейтроны – незаряженные частицы с относительной атомной массой, равной 1. Следовательно, чтобы найти число нейтронов в атоме, из относительной атомной массы надо вычесть число протонов (заряд ядра атома, порядковый номер) Масса электронов ничтожна, мала, ее в расчет не принимают.

Именно по числу протонов в ядре отличаются атомы разных элементов. Химический элемент – это вид атомов с одинаковым зарядом ядра. Число нейтронов в ядрах атомов одного и того же элемента может быть разным.

Разновидности атомов химического элемента, имеющие в ядрах разное число нейтронов, называют изотопами. Именно наличием изотопов объясняются те перестановки, которые в свое время. Современная наука подтвердила его правоту. Так, природный калий образован в основном атомами его легких изотопов, а аргон – тяжелых. Поэтому относительная атомная масса калия меньше, чем аргона, хотя порядковый номер (заряд) калия больше.

Большинство химических элементов представляет собой смеси изотопов. Например , природный хлор содержит изотопы с атомными массами 35 и 37. Относительная атомная масса 35,5 получена расчетным путем с учетом не только массы изотопов, но и содержания каждого из них в природе. Из-за того, что химические элементы имеют изотопы, а значения относительных атомных масс элементов – это усредненные по содержанию изотопов величины, они представляют собой дробные, а не целые числа.

Когда хотят подчеркнуть о каком именно изотопе идет речь, около химического знака слева вверху пишут значение относительной атомной массы атома этого изотопа, а слева внизу – заряд ядра, например 37Cl17.

1.2. Состояние электронов в атоме

Под состоянием электрона в атоме понимают совокуп­ность информации об энергии определенного электрона и про­ странстве, в котором он находится. Мы уже знаем, что электрон в атоме не имеет траектории движения, то есть мож­но говорить лишь о вероятности нахождения его в простран­стве вокруг ядра. Он может находиться в любой части этого пространства, окружающего ядро, и совокупность различных положений его рассматривают как электронное облако с оп­ределенной плотностью отрицательного заряда.

В. Гейзенберг ввел понятие о принципе неопределенности, то есть показал, что невозможно определить одновременно и точно энергию и местоположение электрона. Чем точнее определена энергия электрона, тем неопределеннее будет его положение, и наоборот, определив положение, нельзя определить энергию элект­рона. Область вероятности обнаружения электрона не имеет четких границ. Однако можно выделить пространство, где ве­роятность нахождения электрона будет максимальной.

Пространство вокруг атомного ядра, в котором наиболее вероятно нахождение электрона, называется орбиталью.

Число энергетических уровней (электронных слоев) в атоме равно номеру периода в системе, к которому принадлежит химический элемент: у ато мов элементов первого периода - один энергетический уровень, второго периода - два, седьмого периода - семь.

Наибольшее число электронов на энергетическом уровне определяется по формуле

N = 2 n 2 ,

где N - максимальное число электронов; п - номер уровня или главное квантовое число. Следовательно, на первом, бли­ жайшем к ядру энергетическом уровне может находиться не более двух электронов;

на втором - не более 8;

на третьем - не более 18;

на четвертом - не более 32.

А как, в свою очередь, устроены энергетические уровни (электронные слои)?

Начиная со второго энергетического уровня (п = 2), каждый из уровней подразделяется на подуровни (подслои), не­сколько отличающиеся друг от друга энергией связи с ядром.

Число подуровней равно значению главного квантового числа: первый энергетический уровень имеет один подуро­вень; второй - два; третий - три; четвертый - четыре подуровня. Подуровни, в свою очередь, образованы орбиталями.

Каждому значению п соответствует число орбиталей, равное п2. По данным, представленным в таблице 1, можно про­следить связь главного квантового числа п с числом подуров­ней, типом и числом орбиталей и максимальным числом электронов на подуровне и уровне.

s -Подуровень - первый, ближайший к ядру атома подуровень каждого энергетического уровня, состоит из одной s-орбитали;

р-подуровень - второй подуровень каждого, кроме перво­го, энергетического уровня, состоит из трехр-орбиталей;

d -подуровень - третий подуровень каждого, начиная с третьего, энергетического уровня, состоит из пяти d-орбиталей;

f -подуровень каждого, начиная с четвертого, энергетического уровня, состоит из семи - орбиталей.

На рисунке представлена схема, отражающая число, форму и положение в пространстве электронных орбиталей первых четырех электронных слоев отдельного атома.

1.3. Электронные конфигурации в атомах химических элементах

Швейцарский физик В. Паули в 1925 г. установил, что в атоме на одной орбитами может находиться не более двух электронов, имеющих противоположные (антипараллельные) спины (в переводе с английского «веретено »), то есть обладающих такими свойствами, которые условно можно представить себе как вращение электрона вокруг своей вооб­ражаемой оси: по часовой или против часовой стрелки. Этот принцип носит название принципа Паули.

Если на орбитали находится один электрон, то он называ­ется неспаренным, если два, то это спаренные электроны, то есть электроны с противоположными спинами.

s-Орбиталь, как вы уже знаете, имеет сферическую форму. Электрон атома водорода (п = 1) располагается на этой орбитали и неспарен. Поэтому его электронная формула, или элек тронная конфигурация, будет записываться так: 1s1. В электрон­ных формулах номер энергети­ческого уровня обозначается цифрой, стоящей перед буквой (1...), латинской буквой обозначают подуровень (тип орбитали), а цифра, которая записывается справа вверху от буквы (как по­казатель степени), показывает число электронов на подуровне.

На втором энергетическом уровне (n = 2) имеется четыре орбитали: одна s и три р. Электроны s-орбитали второго уров­ня (2p-орбитали) обладают более высокой энергией, так как находятся на большем расстоянии от ядра, чем электроны ls-орбитали (n = 2)

Вообще, для каждого значения п существует одна s-орбиталь, но с соответствующим запасом энергии электронов на нем и, следовательно, с соответствующим диаметром, растущим по мере увеличения значения п.

р-Орбиталь имеет форму гантели или объемной восьмерки. Все три р-орбитали расположены в атоме взаимно перпендикулярно вдоль пространственных координат, проведенных через ядро атома. Следует подчеркнуть еще раз, что каждый энергетический уровень (электронный слой), начиная с п = 2, имеет три р-орбитали. С увеличением значения п электроны занимают. р-орбитали, расположенные на больших расстояниях от ядра и направленные по осям х, у, г.

У элементов второго периода (п = 2) заполняется сначала одна s-орбиталь, а затем три р-орбитали.

У элементов третьего периода заполняются соответственно 3s - и 3р-орбитали. Пять d-орбиталей третьего уровня при этом остаются свободными:

У элементов больших периодов (четвертого и пятого) первые два электрона занимают соответственно 4s - и 5s - орбитали.

Начиная с третьего элемента каждого большого периода, последующие десять электронов поступят на предыдущие 3d - и 4d - орбитали соответственно.

У элементов больших периодов - шестого и незавершен­ного седьмого - электронные уровни и подуровни заполняют­ся электронами, как правило, так: первые два электрона по­ступят на внешний s-подуровень следующий один электрон (у La и Ас) на предыдущий d-подуровень. Затем последующие 14 электронов поступят на третий снаружи энергетический уровень на 4 f- и 5f-орбитали соответственно у лантаноидов и актиноидов:

Затем снова начнет застраиваться второй снаружи энергетический уровень (d-подуровень): у элементов побочных подгрупп: 73Та 2, 8, 18, 32, 11, 2; 104Rf 2, 8, 18, 32, 32, 10, 2, - и, наконец, только после полного заполнения десятью электронами d-подуровня будет снова заполняться внешний р-подуровень:

86Rn 2, 8, 18, 32, 18, 8.

Очень часто строение электронных оболочек атомов изображают с помощью энергетических или квантовых ячеек - записывают так называемые графические электронные формулы. Для этой записи используют следующие обозначения: каждая квантовая ячейка обозначается клеткой, которая соответствует одной орбитали; каждый электрон обозначается стрелкой, соответствующей направлению спина. При записи графической электронной формулы следует помнить два пра­вила: принцип Паули , согласно которому в ячейке (орбитали) может быть не более двух электронов, но с антипараллельными спинами, и правило Ф. Хунда , согласно которому электроны занимают свободные ячейки (орбитали), располагаются в них сначала по одному и имеют при этом одинаковое значение спина, а лишь затем спариваются, но спины при этом по принципу Паули будут уже противоположно направленными.

1.4. Строение электронной оболочки атомов

В ходе химических реакций ядра атомов не изменяются. Этот вывод можно сделать из известного вам факта, что продукты реакции состоят из атомов тех же химических элементов, что и исходные вещества. Но что же происходит с атомами в ходе химических реакций? Существует ли связь между строением атома и проявлением тех или иных физических и химических свойств? Для ответа на вопросы надо сначала рассмотреть строение электронной оболочки атомов разных химических элементов.

Число электронов в атоме равно заряду его ядра. Электроны располагаются на разном удалении от ядра атома, группируясь в электронные слои. Чем ближе к ядру расположены электроны, тем прочнее они связаны с ядром.

Ядро атома водорода имеет заряд +1. В атоме только одни электрон и, естественно, одни электронный слой.

Следующий за водородом гелий. Не образует соединений с другими элементами, а значит, валентность не проявляет. Ядро атома гелия имеет заряд +2, вокруг него движутся два электрона, образуя один электронный слой. Атомы гелия не дают соединений с атомами других химических элементов, а это говорит о большой устойчивости его электронной оболочки. Электронные оболочки гелия и других атомов инертных газов называют завершенными.

Следующий элемент – литий. В атоме лития три электрона. Два из них находятся на первом, ближнем к ядру электронном слое, а третий образует второй внешний электронный слой. В атоме лития появился второй электронный слой. Находящийся на нем электрон более удален от ядра и слабее связан с ядром, чем два других.

Найдите в периодической таблице химический знак лития. От лития до неона закономерно возрастает заряд ядер атомов. Постепенно заполняется электронами второй электронный слой, и с ростом числа электронов на нем металлические свойства элементов постепенно ослабевают и сменяются нарастающими неметаллическими.

Фтор – самый активный неметалл, заряд его ядра +9, в его атоме два электронных слоя, содержащих 2 и 7 электронов. За фтором следует неон.

По свойствам элементы фтор и неон резко различаются. Неон инертен и так же, как гелий, не образует соединений. Значит, второй электронный слой, содержащий восемь электронов, является завершенным: электроны сформировали устойчивую систему, придавая атому инертность.

Если это так, то следующий элемент, атомы которого должны отличатся от атомов неона дополнительным протоном в ядре и электронном, будет иметь три электронных слоя. У атома этого элемента появится, таким образом, третий, внешний электронный слой, заселенный одним электроном. Этот элемент будет резко отличатся по свойствам от неона, он должен быть активным металлом, подобно литию, и проявлять в соединениях валентность, равную 1.

Данному описанию подходит элемент натрий. Он открывает третий период. Натрий – щелочной металл, еще более активный чем литий. Значит, наши предположения оказались верны. Единственный электрон внешнего электронного слоя атома натрия расположен дальше от ядра, чем внешний электрон лития, а потому еще слабее связан с ядром.

В ряду элементов от натрия до аргона вновь проявляется отмеченная выше закономерность: увеличивается число электронов, образующих внешний электронный слой атомов, металлические свойства простых веществ от натрия к алюминию ослабевают, неметаллические свойства усиливаются при переходе от кремния к фосфору и сере и наиболее ярко выражены у галогенов. В конце третьего периода находится элемент – аргон, в атоме которого завершенный, восьмиэлектронный внешний слой. При переходе от хлора к аргону резко изменяются свойства атомов элементов, а с ними и свойства простых веществ и соединений этого элемента. Известно, что аргон – инертный газ. Он не вступает в соединения с другими веществами.

Также резко изменяются свойства и при переходе от аргона – последнего элемента третьего периода к первому элементу четвертого периода – калию. Калий – щелочной металл, в химическом отношении очень активен.

Таким образом, количественные изменения в составе атома (число протонов в ядре и электронов на внешнем электронном слое) связаны с качественными (свойства простых веществ и соединений, образованных химическим элементом).

Систематизируем знания.

1. В электронной оболочке атома электроны расположены слоями. Первый от ядра слой завершен, когда на нем находятся два электрона, второй завершенный слой содержит восемь электронов.

2. Число электронных слоев в атоме совпадает с номером периода, в котором находится химический элемент

3. Электронная оболочка атома каждого следующего элемента в периодической системе повторяет строение электронной оболочки предыдущего элемента, но отличается от нее на один электрон.

Изученного вам достаточно, чтобы сделать выводы о взаимосвязи строения атомов и свойства химических элементов, понять причины периодического изменения их свойств, сходства и различия. Сформулировать эти выводы.

1. Свойства химических элементов, расположенных в порядке возрастания зарядов ядер атомов, изменяются периодически потому, что периодически повторяется сходное строение внешнего электронного слоя атомов .

2. Плавное изменение свойств элементов в пределах одного периода обусловлено постепенным увеличением числа электронов на внешнем слое атомов.

3. Завершение внешнего электронного слоя атома приводит к резкому скачку в свойствах при переходе от галогена к инертному газу; появление нового внешнего электронного слоя в атоме – причина резкого скачка в свойствах при переходе от инертного газа к щелочному металлу.

4. Свойства химических элементов, принадлежащих к одному семейству, сходны потому, что на внешнем электронном слое их атомов находится одинаковое число электронов.

1.5. Валентные возможности атомов химических элементов

Строение наружных энергетических уровней атомов химических элементов и определяет в основном свойства их атомов. Поэтому эти уровни называют валентными. Электроны этих уровней, а иногда и предвнешних уровней могут принимать участие в образовании химических связей. Такие электроны также называют валентными.

Валентность атома химического элемента определяется в первую очередь числом неспаренных электронов, принимающих участие в образовании химической связи .

Валентные электроны атомов элементов главных подгрупп расположены на s - и p-орбиталях внешнего электронного слоя. У элементов побочных подгрупп, кроме лантаноидов и актиноидов, валентные электроны расположены на s-орбитали внешнего и d-орбиталях предвнешнего слоев.

Для того чтобы верно оценить валентные возможности атомов химических элементов, нужно рассмотреть распределение электронов в них по энергетическим уровням и подуровням и определить число неспаренных электронов в соответствии с принципом Паули и правилом Хунда для невозбужденного (основного, или стационарного) состояния атома и для возбужденного (то есть получившего дополнительную энергию, в результате чего происходит распаривание электронов внешнего слоя и переход их на свободные орбитали). Атом в возбужденном со­стоянии обозначают соответствующим символом элемента со звездочкой.

https://pandia.ru/text/80/139/images/image003_118.gif" height="757">Например, рассмотрим валентные возможности атомов фосфора в стационарном и возбужденном состояниях:

https://pandia.ru/text/80/139/images/image006_87.jpg" width="384" height="92 src=">

Затраты энергии на возбуждение атомов углерода с избыт­ком компенсируются энергией, выделяющейся при образова нии двух дополнительных ковалентных связей. Так, для перевода атомов углерода из стационарного состояния 2s22p2 в возбужденное - 2s12p3 требуется затратить около 400 кДж/моль энергии. Но при образовании С-Н-связи в предельных угле­водородах выделяется 360 кДж/моль. Следовательно, при об­разовании двух молей С-Н-связей выделится 720 кДж, что превышает энергию перевода атомов углерода в возбужденное состояние на 320 кДж/моль.

В заключение следует отметить, что валентные возмож­ности атомов химических элементов далеко не исчерпывают­ся числом неспаренных электронов в стационарном и возбуж­денном состояниях атомов. Если вы вспомните донорно-акцепторный механизм образования ковалентных связей, то вам станут понятны и две другие валентные возможности атомов химических элементов, которые определяются наличием сво­бодных орбиталей и наличием неподеленных электронных пар, способных дать ковалентную химическую связь по донорно-акцепторному механизму. Вспомните образование иона ам­мония NH4+ (Более подробно мы рассмотрим реализацию этих валентных возможностей атомами химических элементов при изучении химической связи.)

Сделаем общий вывод.

Валентные возможности атомов химических элементов определяются: 1) числом неспаренных электронов (одноэлектронных орбиталей); 2) наличием свободных орбиталей; 3) наличием неподеленных пар электронов.

Лекция: Строение электронных оболочек атомов элементов первых четырех периодов: s-, p- и d-элементы


Строение атома

XX столетие является временем изобретения "модели строения атома". Исходя из предоставленного строения, удалось выработать следующую гипотезу: вокруг достаточно маленького по объему и размеру ядра, электроны совершают перемещения, схожие с перемещением планет вокруг Солнца. Последующее изучение атома показало, что сам атом и его строение гораздо сложнее, чем было установлено раньше. И в настоящее время, при огромных возможностях в научной сфере, атом исследован не до конца. Такие составляющие, как атом и молекулы, считаются предметами микромира. Поэтому данные части человек не способен рассмотреть самостоятельно. В этом мире установлены совершенно иные законы и правила, отличающиеся от макромира. Исходя из этого, исследование атома ведется на его модели.

Любому атому присвоен порядковый номер, закрепленный в Периодической таблице Менделеева Д.И. К примеру, порядковый номер атома фосфора (Р) - 15.


Итак, атом состоит из протонов (p + ) , нейтронов (n 0 ) и электронов (e - ). Протоны и нейтроны образуют ядро атома, оно имеет положительный заряд. А электроны, совершающие перемещения вокруг ядра, «конструируют» электронную оболочку атома, имеющую отрицательный заряд.

Сколько электронов в атоме? Это легко узнать. Достаточно посмотреть порядковый номер элемента в таблице.

Так, число электронов фосфора равно 15 . Количество электронов, содержащихся в оболочке атома, строго равно числу протонов, содержащихся в ядре. Значит и протонов в ядре атома фосфора 15 .

Масса протонов и нейтронов, составляющих массу ядра атома, одинакова. А электроны меньше в 2000 раз. Это означает что вся масса атома сосредоточена в ядре, массой электронов пренебрегают. Массу ядра атома мы также можем узнать из таблицы. Посмотрите изображение фосфора в таблице. Внизу мы видим обозначение 30, 974 – это и есть масса ядра фосфора, его атомная масса. При записи мы округляем эту цифру. Исходя из сказанного, запишем строение атома фосфора следующим образом:

(внизу слева написали заряд ядра – 15, вверху слева округленное значение массы атома – 31).

Ядро атома фосфора:


(внизу слева пишем заряд: протоны имеют заряд равный +1, а нейтроны не заряжены, то есть заряд 0; вверху слева масса протона и нейтрона, равная 1 – условная единица массы атома; заряд ядра атома равен числу протонов в ядре, значит р=15, а число нейтронов нужно посчитать: из атомной массы вычесть заряд, т.е. 31 – 15 = 16).

Электронная оболочка атома фосфора включает в себя 15 отрицательно заряженных электронов, уравновешивающих положительно заряженные протоны. Поэтому, атом – электронейтральная частица.


Энергетические уровни


Рис.1

Далее нам необходимо подробно разобрать как распределяются электроны в атоме. Их движение не хаотично, а подчинено конкретному порядку. Какие - то из имеющихся электронов, притягиваются к ядру с достаточно большой силой, а другие наоборот, притягиваются слабо. Первопричина такого поведения электронов скрывается в разной степени удаленности электронов от ядра. То есть, ближе находящийся к ядру электрон, станет прочнее с ним взаимосвязан. Эти электроны просто нельзя отсоединить от электронной оболочки. Чем электрон дальше от ядра, тем проще «вытащить» его из оболочки. Так же, запас энергии электрона возрастает, по мере удаления от ядра атома. Энергия электрона определяется главным квантовым числом n, равняющимся любому натуральному числу (1,2,3,4…). Электроны, имеющие одинаковое значение n, образуют один электронный слой, как бы отгораживаясь от иных электронов, передвигающихся на удаленном расстоянии. На рисунке 1 изображены электронные слои, содержащиеся в электронной оболочке, в центре ядро атома.


Вы можете заметить, как по мере удаления от ядра увеличивается объем слоя. Следовательно, чем дальше слой от ядра, тем больше в нем электронов.

Электронный слой, содержит в себе электроны, сходные по показателям энергии. Из – за этого, такие слои нередко именуют энергетическими уровнями. Сколько же уровней может содержать атом? Количество энергетических уровней равно номеру периода в таблице Менделеева Д.И. в котором находится элемент. К примеру, фосфор (Р) находится в третьем периоде, значит атом фосфора имеет три энергетических уровня.

Рис. 2

Как узнать максимальное количество электронов, располагающихся на одном электронном слое? Для этого используем формулу N max = 2n 2 , где n – это номер уровня.

Получим, что первый уровень содержит всего 2 электрона, второй – 8, третий – 18, четвертый – 32.

Каждый энергетический уровень содержит в себе подуровни. Их буквенные обозначения: s-, p-, d- и f- . Посмотрите на рис. 2:

Разным цветом обозначены энергетические уровни, а полосками разной толщины подуровни.

Самый тонкий подуровень обозначается буквой s . 1s – это s-подуровень первого уровня, 2s – это s-подуровень второго уровня и так далее.

На втором энергетическом уровне появился p-подуровень, на третьем – d-подуровень, а на четвертом f-подуровень.

Запомните увиденную закономерность: первый энергетический уровень включает одну s-подуровень, второй два s- и p- подуровня, третий три s-, p- и d-подуровня, а четвертый уровень четыре s-, p-, d- и f-подуровня.

На s-подуровне могут находится только 2 электрона, на p-подуровне- максимум 6 электронов, на d-подуровне - 10 электронов, а на f-подуровне до 14 электронов.


Электронные орбитали

Область (место) где может находится электрон называется электронным облаком или орбиталью. Имейте ввиду, что говорится о вероятной области нахождении электрона, поскольку скорость его движения в сотни тысяч раз больше скорости движения иглы швейной машинки. Графически эта область изображается в виде ячейки:

В одной ячейке может находится два электрона. Судя по рисунку 2 можно сделать вывод о том, что s-подуровень, включающий не более двух электронов может содержать только одну s-орбиталь, обозначается одной ячейкой; p-подуровень имеет три р-орбитали (3 ячейки), d-подуровень пять d-орбиталей (5 ячеек), а f-подуровень семь f-орбиталей (7 ячеек).

Форма орбитали зависит от орбитального квантового числа (l - эль) атома. Атомный энергетический уровень, берет начало с s – орбитали, имеющей l = 0. Представленная орбиталь имеет сферическую форму. На уровнях, идущих после s - орбитали, образуются p – орбитали с l = 1. P - орбитали напоминают форму гантели. Орбиталей, имеющих данную форму, всего три. Каждая возможная орбиталь содержит в себе не больше 2 – ух электронов. Далее располагаются более сложного строения d -орбитали (l = 2), а за ними f -орбитали (l = 3).

Рис. 3 Форма орбиталей

Электроны в орбиталях изображаются в виде стрелочек. Если орбитали содержат по одному электрону, то они однонаправленны – стрелкой вверх:

Если же в орбитали два электрона, то они имеют два направления: стрелкой вверх и стрелкой вниз, т.е. электроны разнонаправленны:

Такое строение электронов называется валентным.

Существуют три условия наполнения атомных орбиталей электронами:

    1 условие: Принцип минимального количества энергии. Заполнение орбиталей начинается с подуровня, имеющего минимальную энергию. Согласно данному принципу подуровни заполняются в таком порядке: 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 6 5s 2 4d 10 5р 6 6s 2 5d 1 4f 14 ... Как мы видим, в некоторых случаях электрону энергетически выгоднее занять место в подуровне вышележащего уровня, хотя подуровень нижележащего уровня не заполнен. Например, валентная конфигурация атома фосфора выглядит так:

Рис. 4


    2 условие: Принцип Паули. Одна орбиталь включает 2 электрона (электронную пару) и не больше. Но возможно и содержание всего одного электрона. Его именуют неспаренным.

    3 условие: Правило Хунда. Каждую орбиталь одного подуровня сначала заполняют по одному электрону, затем в них добавляются по второму электрону. В жизни мы видели аналогичную ситуацию, когда незнакомые пассажиры автобуса сначала занимают по одному все свободные сидения, а потом рассаживаются по два.

Электронная конфигурация атома в основном и возбужденном состоянии


Энергия атома, находящегося в основном состоянии, наименьшая. Если атомы начинают получать энергию из вне, к примеру, когда вещество нагревается, то они из основного состояния переходят в возбужденное. Этот переход возможен при наличии свободных орбиталей, на которые могут переместиться электроны. Но это временно, отдавая энергию, возбужденный атом возвращается в своё основное состояние.

Закрепим полученные знания на примере. Рассмотрим электронную конфигурацию, т.е. сосредоточение электронов по орбиталям атома фосфора в основном (невозбужденном состоянии). Еще раз обратимся к рис. 4. Итак, вспомним, что атом фосфора имеет три энергетических уровня, которые изображаются полудугами: +15)))

Распределим, имеющиеся 15 электронов на эти три энергетических уровня:


Такие формулы называются электронными конфигурациями. Есть еще электронно – графические, они иллюстрируют размещение электронов внутри энергетических уровней. Электронно – графическая конфигурация фосфора выглядит так: 1s 2 2s 2 2p 6 3s 2 3p 3 (здесь большие цифры – это номера энергетических уровней, буквы – это подуровни, а маленькие цифры – количество электронов подуровня, если их сложить, получится число 15).

В возбужденном состоянии атома фосфора 1 электрон переходит с 3s-орбитали на 3d-орбиталь, а конфигурация выглядит так: 1s 2 2s 2 2p 6 3s 1 3p 3 3d 1 .


ОПРЕДЕЛЕНИЕ

Атом – наименьшая химическая частица.

Многообразие химических соединений обусловлено различным сочетанием атомов химических элементов в молекулы и немолекулярные вещества. Способность же атома вступать в химические соединения, его химические и физические свойства определяются структурой атома. В связи с этим для химии первостепенное значение имеет внутреннее строение атома и в первую очередь структура его электронной оболочки.

Модели строения атома

В начале XIX века Д. Дальтон возродил атомистическую теорию, опираясь на известные к тому времени основополагающие законы химии (постоянства состава, кратных отношений и эквивалентов). Были проведены первые эксперименты по изучению строения вещества. Однако, несмотря на сделанные открытия (атомы одного и того же элементы обладают одними и теми же свойствами, а атомы других элементов – иными свойствами, введено понятие атомной массы), атом считали неделимым.

После получения экспериментальных доказательств (конец XIX начало XX века) сложности строения атома (фотоэффект, катодные и рентгеновские лучи, радиоактивность) было установлено, что атом состоит из отрицательно и положительно заряженных частиц, которые взаимодействуют между собой.

Эти открытия дали толчок к созданию первых моделей строения атома. Одна из перых моделей была предложена Дж. Томсоном (1904) (рис. 1): атом представлялся как «море положительного электричества» с колеблющимися в нем электронами.

После опытов с α-частицами, в 1911г. Резерфорд предложил так называемую планетарную модель строения атома (рис. 1), похожую на строение солнечной системы. Согласно планеетарной модели, в центре атома находится очень маленькое ядро с зарядом Z е, размеры которого приблизительно в 1000000 раз меньше размеров самого атома. Ядро заключает в себе практически всю массу атома и имеет положительный заряд. Вокруг ядра по орбитам движутся электроны, число которых определяется зарядом ядра. Внешняя траектория движения электронов определяет внешние размеры атома. Диаметр атома составляет 10 -8 см, в то время, как диаметр ядра много меньше -10 -12 см.

Рис. 1 Модели строения атома по Томсону и Резерфорду

Опыты по изучению атомных спектров показали несовершенство планетарной модели строения атома, поскольку эта модель противоречит линейчатой структуре атомных спектров. На основании модели Резерфорда, учении Энштейна о световых квантах и квантовой теории излучения планка Нильс Бор (1913) сформулировал постулаты , в которых заключается теория строения атома (рис. 2): электрон может вращаться вокруг ядра не по любым, а только по некоторым определенным орбитам (стационарным), двигаясь по такой орбите он не излучает электромагнитной энергии, излучение (поглощение или испускание кванта электромагнитной энергии) происходит при переходе (скачкообразном) электрона с одной орбиты на другую.

Рис. 2. Модель строения атома по Н. Бору

Накопленный экспериментальный материал, характеризующий строение атома, показал, что свойства электронов, а также других микрообъектов не могут быть описаны на основе представлений классической механики. Микрочастицы подчиняются законам квантовой механики, которая стала основой для создания современной модели строения атома .

Главные тезисы квантовой механики:

— энергия испускается и поглощается телами отдельными порциями – квантами, следовательно, энергия частиц изменяется скачкообразно;

— электроны и другие микрочастицы имеют двойственную природу – проявляет свойства и частицы, и волны (корпускулярно-волновой дуализм);

— квантовая механика отрицает наличие определенных орбит у микрочастиц (для движущихся электронов невозможно определить точное положение, т.к. они движутся в пространстве вблизи ядра, можно лишь определить вероятность нахождения электрона в различных частях пространства).

Пространство вблизи ядра, в котором достаточно велика вероятность нахождения электрона (90%), называется орбиталью .

Квантовые числа. Принцип Паули. Правила Клечковского

Состояние электрона в атоме можно описать с помощью четырех квантовых чисел .

n – главное квантовое число. Характеризует общий запас энергии электрона в атоме и номер энергетического уровня. nприобретает целочисленные значения от 1 до ∞. Наименьшей энергией электрон обладает при n=1; с увеличением n – энергия . Состояние атома, когда его электроны находятся на таких энергетических уровнях, что их суммарная энергия минимальна, называется основным. Состояния с более высокими значениями называются возбужденными. Энергетические уровни обозначаются арабскими цифрами в соответствии со значением n. Электроны можно расположить по семи уровням, поэтому, реально n существует от 1 до 7. Главное квантовое число определяет размеры электронного облака и определяет средний радиус нахождения электрона в атоме.

l – орбитальное квантовое число. Характеризует запас энергии электронов в подуровне и форму орбитали (табл. 1). Принимает целочисленные значения от 0 до n-1. l зависит от n. Если n=1,то l=0, что говорит о том, что на 1-м уровне 1-н подуровень.


m e – магнитное квантовое число. Характеризует ориентацию орбитали в пространстве. Принимает целочисленные значения от –l через 0 до +l. Так, при l=1 (p-орбиталь), m e принимает значения -1, 0, 1 и ориентация орбитали может быть различной (рис. 3).

Рис. 3. Одна из возможных ориентаций в пространстве p-орбитали

s – спиновое квантовое число. Характеризует собственное вращение электрона вокруг оси. Принимает значения -1/2(↓) и +1/2 (). Два электрона на одной орбитали обладают антипараллельными спинами.

Состояние электронов в атомах определяется принципом Паули : в атоме не может быть двух электронов с одинаковым набором всех квантовых чисел. Последовательность заполнения орбиталей электронами определяется правилами Клечковского : орбитали заполняются электронами в порядке возрастания суммы (n+l) для этих орбиталей, если сумма (n+l) одинакова, то первой заполняется орбиталь с меньшим значением n.

Однако, в атоме обычно присутствуют не один, а несколько электронов и, чтобы учесть их взаимодействие друг с другом используют понятие эффективного заряда ядра – на электрон внешнего уровня действует заряд, меньший заряда ядра, вследствие чего внутренние электроны экранируют внешние.

Основные характеристики атома: атомный радиус (ковалентный, металлический, ван-дер-ваальсов, ионный), сродство к электрону, потенциал ионизации, магнитный момент.

Электронные формулы атомов

Все электроны атома образуют его электронную оболочку. Строение электронной оболочки изображается электронной формулой , которая показывает распределение электронов по энергетическим уровням и подуровням. Число электронов на подуровне обозначается цифрой, которая записывается справа вверху от буквы, показывающей подуровень. Например, атом водорода имеет один электрон, который расположен на s-подуровне 1-го энергетического уровня: 1s 1 . Электронная формула гелия, содержащего два электрона записывается так: 1s 2 .

У элементов второго периода электроны заполняют 2-й энергетический уровень, на котором могут находиться не более 8-ми электронов. Вначале электроны заполняют s-подуровень, потом – p-подуровень. Например:

5 B 1s 2 2s 2 2p 1

Связь электронного строения атома с положением элемента в Периодической системе

Электронную формулу элемента определяют по его положению в Периодической системе Д.И. Менделеева. Так, номер периода соответствует У элементов второго периода электроны заполняют 2-й энергетический уровень, на котором могут находиться не более 8-ми электронов. Вначале электроны заполняют У элементов второго периода электроны заполняют 2-й энергетический уровень, на котором могут находиться не более 8-ми электронов. Вначале электроны заполняют s-подуровень, потом – p-подуровень. Например:

5 B 1s 2 2s 2 2p 1

У атомов некоторых элементов, наблюдается явление «проскока» электрона с внешнего энергетического уровня на предпоследний. Проскок электрона происходит у атомов меди, хрома, палладия и некоторых других элементов. Например:

24 Cr 1s 2 2s 2 2p 6 3s 2 3p 6 3d 5 4s 1

энергетический уровень, на котором могут находиться не более 8-ми электронов. Вначале электроны заполняют s-подуровень, потом – p-подуровень. Например:

5 B 1s 2 2s 2 2p 1

Номер группы для элементов главных подгрупп равен числу электронов на внешнем энергетическом уровне, такие электроны называют валентными (они участвуют в образовании химической связи). Валентными электронами у элементов побочных подгрупп могут быть электроны внешнего энергетического уровня и d-подуровня предпоследнего уровня. Номер группы элементов побочных подгрупп III-VII групп, а также у Fe, Ru, Os соответствует общему числу электронов на s-подуровне внешнего энергетического уровня и d-подуровне предпоследнего уровня

Задания:

Изобразите электронные формулы атомов фосфора, рубидия и циркония. Укажите валентные электроны.

Ответ:

15 P 1s 2 2s 2 2p 6 3s 2 3p 3 Валентные электроны 3s 2 3p 3

37 Rb 1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 2 4p 6 5s 1 Валентные электроны 5s 1

40 Zr 1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 2 4p 6 4d 2 5s 2 Валентные электроны 4d 2 5s 2

Просмотров