Каким образом различные вещества попадают в клетку. Большая энциклопедия нефти и газа

По-видимому, одни вещества пассивно протекают через клеточную мембрану под действием разности давлений, другие довольно активно накачиваются в клетку сквозь мембрану, а третьи втягиваются в клетку благодаря впячиванию мембраны внутрь.

Большая часть клеток живет в среде, неподходящей для того, чтобы поддерживать то чрезвычайно строгое соотношение воды, солей и органических веществ, без которого невозможна жизнь. Это влечет за собой необходимость непрерывного и весьма тщательного регулирования обмена различными веществами, который происходит между внешним миром и цитоплазмой. Преградой, отделяющей внутреннее содержимое клетки от окружающей среды, служит клеточная мембрана - тончайшая пленка, толщиной всего лишь в десять миллионных миллиметра.

Эта мембрана проницаема для многих веществ, поток которых идет в обоих направлениях (т. е. из клетки и в клетку). Несмотря на свою ничтожную толщину, мембрана имеет определенную структуру; эта структура и химический состав мембраны, о которых мы имеем еще весьма смутное представление, обусловливают ее избирательную и весьма неравномерную проницаемость. Если силы, обеспечивающие прохождение веществ сквозь мембрану, локализованы в среде, окружающей клетку, то говорят о «пассивном переносе». Если же затрачиваемая на это энергия вырабатывается в самой клетке в процессе ее метаболизма, то говорят об «активном переносе». Такое взаимодействие между клеткой и ее средой служит не только для того, чтобы концентрация в клетке всех веществ, входящих в ее состав, все время удерживалась в известных пределах, вне которых не может быть жизни; в некоторых клетках, например, в нервных клетках, это взаимодействие имеет первостепенное значение для выполнения той функции, которую эти клетки несут в организме.

Многие клетки поглощают необходимые им вещества также путем своего рода заглатывания. Этот процесс известен под названием фагоцитоза или пиноцитоза (слова происходят от греческих слов «есть» и «пить», соответственно, и от слова «клетка»). При таком способе поглощения клеточная мембрана образует карманы или впячивания, которые втягивают вещества извне внутрь клетки; затем эти впячивания отшнуровываются и окруженная мембраной капелька внешней среды в виде пузырька или вакуоли пускается плавать по цитоплазме.

Несмотря на все сходство этого процесса с простым «заглатыванием», мы не вправе еще говорить о поступлении веществ внутрь клетки, поскольку это немедленно влечет за собой вопрос о том, что же означает выражение «внутрь». Со своей, так сказать макроскопической, человеческой, точки зрения, мы склонны легкомысленно утверждать, что как только мы проглотили кусочек пищи, так он и попал к нам внутрь. Однако подобное утверждение не совсем правильно. Внутренность пищеварительного тракта в топологическом смысле представляет собой наружную поверхность; подлинное поглощение пищи начинается лишь тогда, когда она проникает в клетки стенки кишечника. Поэтому и вещество, попавшее в клетку в результате пиноцитоза или фагоцитоза, все еще находится «вовне», поскольку оно еще остается окруженным захватившей его мембраной. Для того чтобы действительно войти в клетку и превратиться в доступный метаболическим процессам компонент цитоплазмы, подобные вещества должны тем или иным способом проникнуть сквозь мембрану.

Одна из сил, оказывающих действие на всю клеточную мембрану, обусловлена градиентом концентрации. Эта сила возникает благодаря беспорядочному движению частиц, стремящихся равномерно распределиться в пространстве. Если два раствора одинакового состава, но разной концентрации приходят в соприкосновение, то начинается диффузия растворенного вещества из области более высокой концентрации, и эта диффузия продолжается до тех пор, пока концентрация не станет повсюду одинаковой. Уравнивание концентраций происходит даже в том случае, если два раствора разделены мембраной, при условии, разумеется, что мембрана проницаема для растворенного вещества. Если мембрана проницаема для растворителя, но непроницаема для растворенного вещества, то градиент концентрации предстает перед нами в виде хорошо знакомого нам явления осмоса: в этом случае растворитель проходит сквозь мембрану, направляясь из области более низкой концентрации растворенного вещества в область более высокой его концентрации. Градиент концентраций и осмотические силы, действующие по обе стороны клеточной мембраны, весьма значительны, так как концентрации многих веществ в клетке резко отличаются от их концентраций во внешней среде.

При пассивном переносе проникновение веществ через мембрану регулируется избирательной проницаемостью мембраны. Проницаемость мембраны для данной молекулы зависит от химического состава и свойств этой молекулы, а также от ее размеров; при этом мембрана способна не только преграждать путь некоторым веществам, но и пропускать сквозь себя разные вещества с различной скоростью.

В зависимости от характера среды, к которой они приспособлены, клетки разных типов обладают весьма неодинаковой проницаемостью. Так, например, проницаемость обыкновенной амебы и эритроцитов человека для воды различается более чем в 100 раз. В таблице констант проницаемости (выражаемых числом кубических микронов воды, проходящих сквозь 1 квадратный микрон клеточной мембраны за 1 минуту под действием разности осмотического давления в 1 атмосферу) против амебы значится величина 0,26, т. е. проницаемость ее очень незначительна. Приспособительное значение такой низкой проницаемости очевидно: организмы, обитающие в пресной воде, сталкиваются с наибольшей разностью концентраций между наружной и внутренней средой и поэтому они вынуждены ограничить поступление воды внутрь, с тем чтобы сэкономить энергию, которая бы потребовалась на выкачивание этой воды обратно. Эритроциты не нуждаются в таком предохранительном приспособлении, так как обычно они бывают окружены плазмой крови - средой, находящейся в относительном осмотическом равновесии с их внутренней средой. Попав в воду, эти клетки тотчас же начинают набухать и довольно быстро лопаются, поскольку их мембрана недостаточно эластична, чтобы выдержать этот внезапный напор воды.

Если, как это обычно бывает в природе, молекулы растворенных веществ диссоциированы на ионы, несущие определенный электрический заряд, то в игру вступают новые силы. Хорошо известно, что мембраны многих, а возможно даже и всех, клеток обладают способностью сохранять известную разность потенциалов между своей наружной и внутренней поверхностью. Вследствие этого возникает определенный градиент потенциала, который наряду с градиентом концентраций служит движущей силой при пассивном переносе через клеточную мембрану.

Третья сила, участвующая в пассивном переносе через мембрану, это перенос растворенных веществ вместе с растворителем (втягивание с растворителем). Она вступает в действие лишь в том случае, если раствор может действительно протекать сквозь мембрану; иными словами, в том случае, если мембрана оказывается пористой. При этом движение частиц растворенного вещества, диффундирующих в направлении потока, ускоряется, а диффузия частиц в противоположном направлении замедляется. Этот эффект втягивания обычно не играет большой роли, однако в некоторых особых случаях значение его довольно велико.

Все три силы, участвующие в пассивном переносе, могут действовать порознь или совместно. Однако независимо от того, какая именно сила вызывает движение - градиент ли концентраций, градиент потенциала или эффект втягивания, - движение всегда происходит в «нисходящем» направлении и мембрана служит пассивной преградой. Вместе с тем в цитологии известно немало важных примеров, когда ни одной из этих трех сил не удается объяснить перенос веществ через мембрану. В этих случаях движение происходит в «восходящем» направлении, т. е. против сил, вызывающих пассивный перенос, и поэтому оно должно происходить за счет энергии, освобождающейся в результате процессов метаболизма, совершающихся в клетке. В этом активном переносе мембрана уже не представляет собой просто пассивную преграду, а действует как некий динамический орган.

Вплоть до недавнего времени все сведения, которыми мы располагали относительно строения клеточной мембраны, получались исключительно в результате изучения ее проницаемости и носили поэтому чисто косвенный характер. Например, было установлено, что многие вещества, растворимые в липидах (жирах), легко проходят через клеточную мембрану. В связи с этим возникло предположение, что в клеточной мембране имеется слой липидов и что вещества, растворимые в липидах, проходят сквозь мембрану, растворяясь по одну ее сторону и вновь освобождаясь с другой ее стороны. Однако оказалось, что и водорастворимые молекулы проходят сквозь клеточную мембрану. Пришлось предположить, что структура мембраны в какой-то мере напоминает сито, т. е. что мембрана снабжена порами или же нелипидными участками, а возможно, теми и другими одновременно; кроме того, для того чтобы объяснить особенности прохождения различных ионов, было допущено наличие в мембране участков, несущих электрический заряд. Наконец, в эту гипотетическую схему строения мембраны был введен также белковый компонент, поскольку появились данные, свидетельствующие, в частности, о смачиваемости мембраны, что несовместимо с чисто жировым составом.

Эти наблюдения и гипотезы сведены в модели клеточной мембраны, предложенной в 1940 г. Дж. Даниэлли. Согласно этой модели, мембрана состоит из двойного слоя липидных молекул, покрытых двумя белковыми слоями. Липидные молекулы лежат параллельно друг другу, но перпендикулярно плоскости мембраны, причем незаряженные их концы обращены друг к другу, а заряженные группы направлены к поверхности мембраны. На этих заряженных концах адсорбированы слои белка, состоящие из белковых цепей, которые образуют сплетение на наружной и внутренней поверхностях мембраны, придавая ей тем самым известную эластичность и устойчивость к механическим повреждениям, а также низкое поверхностное натяжение. Длина липидных молекул равна примерно 30 ангстремам, а толщина мономолекулярного слоя белка - 10 ангстремам; поэтому Даниэлли считал, что общая толщина клеточной мембраны равна примерно 80 ангстремам.

Результаты, полученные при помощи электронного микроскопа, подтвердили правильность модели, созданной Даниэлли. «Элементарная мембрана», исследованная на основании электронных микрофотографий, полученных Робертсоном, по своему виду и размерам соответствует предсказаниям, сделанным Даниэлли, и ее удалось наблюдать у клеток многих различных типов. В ней можно различить две более темные полоски толщиной примерно 20 ангстремов, которые вполне могут соответствовать двум белковым слоям модели; эти две полоски разделены более светлой сердцевиной толщиной 35 ангстремов, соответствующей липидному слою. Общая толщина мембраны, равная 75 ангстремам, довольно близка к величине, предусмотренной моделью.

Не нарушая общей симметрии этой модели, ее следовало бы дополнить с тем, чтобы учесть различия в химической природе внутренней и наружной поверхностей мембраны. Это позволило бы объяснить существование химических градиентов между внутренней и наружной поверхностью мембраны, выявляемое в некоторых наблюдениях. Кроме того, нам известно, что многие клетки одеты углеводсодержащей мукопротеидной оболочкой, толщина которой различна у клеток разных типов. Независимо от того, оказывает ли этот слой влияние на проницаемость, можно допустить, что он играет важную роль в пиноцитозе.

Помимо этих особенностей строения мембраны, так сказать в «поперечном сечении», при исследовании проницаемости выясняется, что структура ее неоднородна и в другом направлении. Известно, например, что клеточные мембраны пропускают частицы, величина которых не превышает известных пределов, задерживая все более крупные частицы, а это заставляет предполагать наличие в этих мембранах пор. Пока что существование пор не подтвердилось электронно-микроскопическими исследованиями. Это и не удивительно, поскольку предполагается, что эти поры очень малы и расположены очень далеко друг от друга, так что вся приходящаяся на их долю площадь не превышает одной тысячной общей поверхности мембраны. Если назвать мембрану ситом, то следует добавить, что дырочек в этом сите очень мало.

Еще более важное обстоятельство состоит в том, что для объяснения высокой избирательной способности, позволяющей многим клеткам отличать одни вещества от других, приходится допустить различную химическую специфичность разных участков мембраны. Выяснилось, например, что некоторые ферменты локализованы на поверхности клетки. По-видимому, их функция состоит в том, чтобы превратить вещества, нерастворимые в мембране, в растворимые производные, способные сквозь нее проходить. Известно немало случаев, когда клетка, проницаемая для какого-либо одного вещества, не пропускает другое вещество, близкое первому и сходное с ним по величине молекулы и электрическим свойствам.

Итак, мы видим, что тоненькая клеточная мембрана представляет собой довольно сложный аппарат, предназначенный для активного вмешательства в перемещение веществ, поступающих в клетку и выделяемых из нее. Подобный аппарат совершенно необходим для процесса активного переноса, при помощи которого и осуществляется главным образом это перемещение. Для того чтобы могло происходить это движение в «восходящем» направлении, клетка должна действовать против сил пассивного переноса. Однако, несмотря на усилия многих ученых, до сих пор не удалось вскрыть механизм, с помощью которого энергия, освобождающаяся в результате клеточного метаболизма, используется для переноса различных веществ через клеточную мембрану. Возможно, что в этой передаче энергии участвуют различные механизмы.

Живейший интерес привлекает проблема активного переноса ионов. Биологам еще 100 лет назад было известно существование разности потенциалов между наружной и внутренней поверхностью мембраны; примерно с того же времени они знают, что эта разность потенциалов оказывает влияние на перенос и распределение ионов. Однако лишь недавно они начали понимать, что сама эта разность потенциалов возникает и поддерживается за счет активного переноса ионов.

О важности этой проблемы свидетельствует то обстоятельство, что цитоплазма многих клеток содержит гораздо больше калия, чем натрия, а между тем они вынуждены жить в среде, для которой характерно как раз противоположное соотношение между содержанием этих двух ионов. Например, плазма крови содержит в 20 раз больше натрия, чем калия, тогда как эритроциты содержат в 20 раз больше калия, чем натрия. Мембрана эритроцитов обладает вполне определенной, хотя и низкой, пассивной проницаемостью как для ионов натрия, так и для ионов калия. Если бы эта проницаемость могла свободно проявляться, то ионы натрия потекли бы в клетку, а ионы калия начали бы вытекать из нее. Поэтому для сохранения существующего соотношения ионов клетке приходится непрерывно «выкачивать» ионы натрия и накапливать ионы калия против 50-кратного градиента концентрации.

Большая часть моделей, предложенных для объяснения активного переноса, основана на допущении существования каких-то молекул-переносчиков. Предполагается, что эти пока еще гипотетические переносчики вступают в соединение с ионами, находящимися на одной поверхности мембраны, проходят в таком виде сквозь мембрану и вновь освобождают ионы на другой поверхности мембраны. Движение таких соединений (молекул переносчика, присоединивших к себе ионы) в отличие от движения самих ионов происходит, как полагают, в «нисходящем» направлении, т. е. в соответствии с химическим градиентом концентрации.

Одна такая модель, созданная Т. Шоу в 1954 г., дает возможность не только объяснить перенос ионов калия и натрия через мембрану, но и установить некоторую связь между ними. Согласно модели Шоу, ионы калия и натрия (К + и Na +) переносятся через мембрану жирорастворимыми переносчиками (X и Y), специфичными для ионов. Образующиеся при этом соединения (КХ и NaY) способны диффундировать сквозь мембрану, тогда как для свободных переносчиков мембрана непроницаема. На наружной поверхности мембраны переносчики натрия превращаются в переносчиков калия, теряя при этом энергию. На внутренней же поверхности мембраны переносчики калия вновь превращаются в переносчиков натрия благодаря получению энергии, возникающей в процессе метаболизма клетки (поставщиками этой энергии служат, по всей вероятности, богатые энергией соединения, в молекуле которых имеются фосфатные связи).

Многие допущения, принятые в этой модели, трудно подтвердить экспериментально, и она признается далеко не всеми. Тем не менее мы сочли нужным о ней упомянуть, так как сама эта модель показывает всю сложность явления-активного переноса.

Задолго до того, как биологи занялись расшифровкой сложной игры физических сил, участвующих в переносе веществ через клеточную мембрану, им уже приходилось наблюдать клетки, так сказать, «за едой». В конце XIX века Илья Мечников впервые увидел, как белые кровяные тельца (лейкоциты) пожирали бактерий, и дал им название «фагоцитов». В 1920 г. А. Шеффер изобразил, как амеба ловит свою жертву - рисунок, ставший классическим. Процесс же пиноцитоза, выраженный менее ясно, был впервые открыт У. Льюисом лишь в 1931 г. Изучая поведение клеток в культуре тканей методом цейтраферной съемки, он заметил на периферии клеток мембранные выросты, которые ундулировали столь энергично, что время от времени замыкались, подобно сжатому кулаку, захватывая часть среды как бы в пузырек. Льюису все это показалось настолько похожим на процесс питья, что он придумал для этого явления и соответствующее название - «пиноцитоз».

Открытие Льюиса вначале не привлекло внимания, если не считать опубликованной в 1934 г. работы С. Маета и У. Дойля, которые сообщили о сходном явлении, наблюдавшемся ими у амебы. Пиноцитоз оставался просто любопытным фактом, пока в середине нынешнего века благодаря электронно-микроскопическим исследованиям не было установлено, что подобное заглатывание имеет гораздо более широкое распространение.

У амеб и у клеток из культуры тканей пиноцитоз можно наблюдать под обычным микроскопом. Благодаря высокой разрешающей способности электронного микроскопа у клеток многих других типов было также обнаружено образование микроскопических пузырьков. С физиологической точки зрения одним из наиболее интересных примеров такого рода служат клетки щеточного эпителия почек и кишечника: пузырьки, приносящие в клетку различные вещества, образуются у основания щеточной каемки, которой этот эпителий обязан своим названием. Основная черта пиноцитоза или фагоцитоза одинакова во всех клетках: некоторый участок клеточной мембраны отсоединяется от поверхности клетки и образует вакуоль или пузырек, который отрывается от периферии и мигрирует внутрь клетки.

Размеры пузырьков, образующихся при пиноцитозе, широко варьируют. У амеб и в клетках, взятых из культуры тканей, средний диаметр только что отделившейся пиноцитозной вакуоли равен 1-2 микронам; размеры же вакуолей, которые нам удается обнаружить при помощи электронного микроскопа, варьируют от 0,1 до 0,01 микрона. Нередко такие вакуоли сливаются друг с другом и их размеры при этом, естественно, увеличиваются. Поскольку большая часть клеток содержит ряд других вакуолей и гранул, пиноцитозные вакуоли вскоре теряются из виду, если только их не снабдить какой-нибудь «меткой». Вакуоли, образующиеся при фагоцитозе, конечно, гораздо крупнее и могут вместить в себя целые бактериальные клетки, клетки простейших, а в случае фагоцитов - фрагменты разрушенных тканей.

На основании простых экспериментов с амебой можно убедиться, что пииоцитоз нельзя наблюдать в любой ткани и в любое время, так как он вызывается присутствием в среде некоторых определенных веществ. В чистой воде пиноцитоза у амеб не происходит: во всяком случае, его не удается обнаружить под микроскопом. Если к воде, в которой находятся амебы, добавить сахар или какие-нибудь другие углеводы, то это ни к чему не приведет. При добавлении же солей, белков или некоторых аминокислот начинается пиноцитоз. С. Чепмен-Андерсен обнаружила, что у амеб каждый такой индуцированный пиноцитоз может продолжаться примерно 30 минут независимо от природы вызвавшего его фактора, причем за это время образуется до 100 пиноцитозных каналов и заглатывается соответствующее число вакуолей. Затем пиноцитоз прекращается и может возобновиться лишь спустя 3-4 часа. По Мнению Чепмен Андерсен, это объясняется тем, что после 30 минут пиноцитоза все участки наружной мембраны, способные к впячиванию, оказываются использованными.

Кроме того, Чепмен-Андерсен помогла решить один старый вопрос, а именно показала, что фагоцитоз и пиноцитоз с физиологической точки зрения представляют собой один и тот же процесс. В поставленном ею опыте амебам сначала давали возможность фагоцитировать столько съедобных для них инфузорий, сколько они могли захватить из среды, кишевшей этими микроорганизмами. Затем их переносили в среду, которая содержала фактор, индуцирующий пиноцитоз. Оказалось, что эти амебы способны образовать лишь несколько каналов (менее 10% обычного числа). И наоборот, амебы, исчерпавшие все свои возможности в отношении пиноцитоза, не фагоцитировали при перенесении в среду, содержавшую организмы, которые они обычно используют в пищу. Таким образом, создается впечатление, что в обоих случаях ограничивающим фактором оказывается поверхность мембраны.

С. Беннетт в 1956 г. высказал предположение, что пиноцитоз вызывается адсорбцией молекул или ионов индуктора на поверхности клеточной мембраны. Это предположение полностью подтвердилось в работах ряда исследователей. Вряд ли можно сомневаться, что у амебы адсорбция происходит на особой оболочке, которая состоит из слизи и обволакивает всю амебу. Поскольку предполагается, что такая оболочка имеется также у многих других клеток, было бы интересно выяснить, выполняет ли она подобную функцию во всех случаях.

Пузырек, вносящий в клетку индуцирующее вещество, вносит в нее при этом и некоторое количество жидкой среды. Чепмен-Андерсен и автор провели эксперимент с «двойной меткой» с целью определить, какому из двух веществ - индуктору или жидкости - принадлежит главная роль. Мы помещали амеб в среду, содержавшую в качестве индуктора белок, меченный радиоактивным изотопом, и сахар с другой радиоактивной меткой, который позволял определять количество поглощенной жидкости. Мы исходили из того, что если основным потребляемым веществом, равно как и веществом, индуцирующим поглощение, служит белок, то относительное содержание белка в вакуолях должно быть выше, чем в среде. Так оно и оказалось. Однако масштабы этого явления значительно превзошли наши ожидания. Общее количество белка, поглощенного в течение 30 минут, соответствовало примерно 25% всей массы амебы. Это весьма внушительная трапеза, которая свидетельствует о том, что наибольшее значение для клетки при пиноцитозе имеют вещества, адсорбируемые на поверхности.

Однако пищу, содержащуюся в вакуоли, все еще следует считать находящейся вне клетки, так как футляр, в который она заключена, представляет собой часть наружной мембраны. Мы должны выяснить, может ли подобное общение с внешней средой обеспечить сырьем метаболический аппарат клетки, и если да, то каким образом. Простейшим способом переноса веществ из вакуоли в цитоплазму было бы растворение мембраны под действием ферментов цитоплазмы. Однако электронно-микроскопические данные не подтверждают такого предположения: еще ни разу не удалось наблюдать исчезновение мембраны, образующей стейку вакуоли.

Поскольку мембрана, очевидно, сохраняется, основной задачей при изучении пиноцитоза становится исследование ее проницаемости. Не вызывает сомнений, что пиноцитозный пузырек отдает воду в цитоплазму; в этом нас убеждает заметное сморщивание вакуолей. Дж. Маршалл и автор показали, что у амеб сморщивание сопровождается постепенным повышением концентрированности содержимого вакуоли. Методом центрифугирования установлено, что в течение первых нескольких часов после пиноцитоза плотность вакуолей все время возрастает по сравнению с плотностью окружающей цитоплазмы. В конечном счете эти вакуоли превращаются в цитоплазматические гранулы, которые по своим размерам и поведению при центрифугировании напоминают митохондрии.

Выяснилось также, что мембрана вакуоли проницаема не только для воды, но также и для таких низкомолекулярных веществ, как глюкоза. Чепмен-Андерсен и автор, используя радиоактивную глюкозу, установили, что поглощаемая в процессе пиноцитоза глюкоза быстро выходит из вакуолей и равномерно распределяется по цитоплазме. Эта глюкоза вступает в нормальные процессы метаболизма, протекающие в клетке, как если бы она попала в клетку обычным способом - в результате диффузии с поверхности клетки; продукт ее метаболизма - радиоактивная углекислота - вскоре появляется среди продуктов выделения амебы. Чепмен-Андерсен и Д. Прескотт получили такие же результаты для некоторых аминокислот. Поэтому не остается сомнений, что при помощи пиноцитоза клетку можно «кормить» веществами, имеющими небольшие молекулы. Экспериментов со «скармливанием» больших молекул пока еще не проводилось.

Эти результаты заставляют предполагать, что происходит какое-то изменение проницаемости мембраны. Изменение это не удается заметить при помощи электронного микроскопа; мембрана кажется одинаковой как до, так и после пиноцитоза. Имеются, однако, сообщения, что оболочка из слизи, выстилающая изнутри стенку вакуоли, отслаивается и вместе с адсорбировавшимся на ней материалом в виде небольшого комочка остается в центре вакуоли.

В то же самое время происходит и другое, вероятно весьма важное, явление. На первичной вакуоли образуются маленькие вторичные вакуоли, которые отрываются от нее и мигрируют в цитоплазму. Мы еще не имеем возможности судить о роли этого процесса для распространения по цитоплазме содержимого первичной вакуоли. Ясно лишь одно: какие бы связанные с проницаемостью процессы ни происходили в мембранах этих микровакуолей, протекание их значительно облегчается благодаря такому огромному увеличению площади мембранной поверхности внутри клетки. Возможно, что вторичные вакуоли участвуют, кроме того, в создании избирательной проницаемости, унося из первичной вакуоли одни вещества и оставляя в ней другие.

Главная трудность, возникающая при попытках объяснения пиноцитоза как одного из основных физиологических процессов, протекающих в клетке, заключается в том, что он совершенно лишен специфичности. Правда, в деятельности фагоцитов, сенсибилизированных антителами на поглощение определенных бактерий, проявляется высокая специфичность. А. Тайлер считает, что при оплодотворении происходит пиноцитозное заглатывание спермы яйцеклеткой - процесс, начинающийся с взаимодействия специфических веществ на поверхностях яйцеклетки и сперматозоида. Однако, вообще говоря, механический захват из окружающей среды адсорбированных веществ и жидкости происходит, вероятно, без особого выбора. Возможно, что в результате этого в клетку нередко попадают бесполезные или даже вредные вещества.

Вероятно, где-то существует механизм, обладающий большей избирательностью. Легче всего предположить, что выбор, активный или пассивный, происходит на мембранах, которые окружают вакуоли и пузырьки, находящиеся в клетке. В таком случае пиноцитоз следует рассматривать не как процесс, исключающий перенос через мембрану, а как процесс, дополняющий такой перенос. Его главная задача должна состоять при этом в создании обширных внутренних поверхностей, на которых деятельность сил, связанных с пассивным и активным переносом, могла бы проявляться еще более эффективно, чем на собственно клеточной поверхности, и при этом с меньшим риском потерь вещества в результате утечки.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter .

Выполняют лабораторную работу.

А) Рассматривают под микроскопом готовые микропрепараты клеток растительной и животной ткани.

Б) Обращают внимание на главный признак эукариот – наличие ядра в цитоплазме каждой клетки.

В) Рассматривают под микроскопом клеточные оболочки растений и животных.

Г) Сравнивают строение клеток растений и животных и делают вывод о характерных признаках строения клеток эукариот, а также отмечают строение и функции клеточной оболочки

Д) Рассматриваемые клетки зарисовывают, и делают, выводы из наблюдений которые записывают в тетради.

Чтение текста. Учащиеся приходят к выводу, что

Биологическая мембрана имеет небольшую толщину (5-10нм)

Липидный слой динамичная структура (подвижность, самозамыкаемость)

Белки (выполняют функции транспорт веществ, поддержание определенной структуры мембраны, получение и преобразование сигналов из окружающей среды.)

Углеводы (распознают внешние сигналы, сцепление соседних клеток)

. Учащиеся выбирают задания по желанию .

Задания №1

Учащиеся выбирают правильный ответ:

1.Какие из перечисленных веществ в состав мембраны не входят?

(белки, липиды, углеводы, нуклеиновые кислоты).

2.Какую функцию выполняют белки, входящие в состав клеточных мембран? (строительную, защитную, ферментативную , все указанные функции)

3.Какуюфункцию выполняют углеводы, входящие в состав клеточных мембран?

(транспорт веществ, узнавание типов клеток, образование двойного слоя мембраны, катализ реакций)

4.Какой из компонентов мембраны обуславливает свойства текучести и подвижности?

(углеводы, липиды, белки, нуклеиновые кислоты)

5.Каково строение липидного слоя в мембране?

А) мономолекулярный, бимолекулярный

б) непрерывный; прерван белковыми парами, частично прерван полупогруженными молекулами белка.

Задание № 2

Учащиеся разгадывают кроссворд

1. Он доказал, что клетки способны делиться.

2. Внутреннее полужидкое содержимое клетки.

3. Процесс попадания пищевой частички внутрь клетки.

4. Процесс попадания капельки жидкости с растворёнными в ней веществами внутрь клетки.

5. Многочисленные внутриклеточные образования, выполняющие разнообразные функции.

6. Элементрарная единица жизни на Земле.

7. Немецкий учёный, один из тех, кто сформулировал клеточную теорию.

8. Координирует жизнедеятельность клетки.

Задание №3

Вопрос 1. Каковы функции наружной мембраны клетки?

Ответ:Наружная клеточная мембрана состоит из двойного липидного слоя и молекул белков, часть которых расположена на поверхности, а некоторые пронизывают оба слоя липидов насквозь. Наружная клеточная мембрана выполняет защитную функцию, отделяя клетку от внешней среды, препятствует повреждению ее содержимого. Кроме того, наружная клеточная мембрана обеспечивает транспорт веществ внутрь клетки и из нее, позволяет клеткам взаимодействовать между собой.

Вопрос 2 . Какими способами различные вещества могут проникать внутрь клетки ?

Ответ: Сквозь наружную клеточную мембрану вещества могут проникать несколькими способами. Во-первых, через тончайшие каналы, образованные молекулами белков, могут проходить внутрь клетки ионы веществ, имеющие небольшие размеры, например ионы натрия, калия, кальция. Во-вторых, в клетку могут попасть вещества путем фагоцитоза или пиноцитоза. Таким путем обычно проникают пищевые частицы.

Вопрос 3 . Чем пиноцитоз отличается от фагоцитоза ?

Ответ:При пиноцитозе выпячивание наружной мембраны захватывает капельки жидкости, а при фагоцитозе - твердые частицы. Вопрос 4. Почему у растительных клеток нет фагоцитоза? При фагоцитозе в том месте, где пищевая частица прикасается к наружной мембране клетки, образуется впячивание, и частица попадает внутрь клетки, окруженная мембраной. У растительной клетки поверх клеточной мембраны имеется плотная непластичная оболочка из клетчатки, что препятствует фагоцитозу.

Текущая страница: 3 (всего у книги 16 страниц) [доступный отрывок для чтения: 11 страниц]

§ 10. АТФ и другие органические соединения клетки

1. Какие органические вещества вы знаете?

2. Какие витамины вам известны? Какова их роль?

3. Какие виды энергии вам известны?

4. Почему для жизнедеятельности любого организма необходима энергия?


Аденозинтрифосфат (АТФ) – нуклеотид, состоящий из азотистого основания аденина, углевода рибозы и трёх остатков фосфорной кислоты (рис. 15), содержится в цитоплазме, митохондриях, пластидах и ядрах.

АТФ – неустойчивая структура. При отделении одного остатка фосфорной кислоты АТФ переходит в аденозиндифосфат (АДФ), если отделяется ещё один остаток фосфорной кислоты (что бывает крайне редко), то АДФ переходит в аденозинмонофосфат (АМФ). При отделении каждого остатка фосфорной кислоты освобождается 40 кДж энергии:

АТФ + Н 2 О → АДФ + Н 3 РО 4 + 40 кДж,

АДФ + Н 2 О → АМФ + Н 3 РО 4 + 40 кДж.

Связь между остатками фосфорной кислоты называют макроэргической (она обозначается символом ~), так как при её разрыве выделяется почти в четыре раза больше энергии, чем при расщеплении других химических связей (рис. 16).


Рис. 15. Строение молекулы АТФ



Рас. 16. Превращение АТФ в АДФ


АТФ – универсальный источник энергии для всех реакций, протекающих в клетке.

Витамины (от лат. vita – жизнь) – сложные биоорганические соединения, необходимые в малых количествах для нормальной жизнедеятельности организмов. Как недостаток, так и избыток витаминов может привести к серьёзным нарушениям многих физиологических функций в организме.

В отличие от других органических веществ, витамины не используются в качестве источника энергии или строительного материала. Некоторые витамины могут синтезироваться самим организмом (например, бактерии способны образовывать практически все витамины). Другие витамины поступают в организм с пищей.

Витамины принято обозначать буквами латинского алфавита. В основу современной классификации витаминов положена их способность растворяться в воде и жирах. Различают жирорастворимые (A, D, Е и К) и водорастворимые (В, С, РР и др.) витамины.

Кроме перечисленных выше органических соединений (углеводы, липиды, белки, нуклеиновые кислоты, витамины), в любой клетке всегда есть много других органических веществ. Они являются промежуточными или конечными продуктами биосинтеза и распада.

Аденозинтрифосфат (АТФ). Аденозиндифосфат (АДФ). Аденозинмонофосфат (АМФ). Макроэргическая связь. Витамины жирорастворимые и водорастворимые

Вопросы

1. Какое строение имеет молекула АТФ?

2. Какую функцию выполняет АТФ?

3. Какие связи называются макроэргическими?

4. Какую роль выполняют в организме витамины?

Задания

Обобщив имеющиеся у вас знания, подготовьте сообщение о роли витаминов в нормальном функционировании организма человека. Обсудите с одноклассниками вопрос: каким образом человек может обеспечить свой организм необходимым количеством витаминов?

§ 11. Биологические катализаторы

1. Какие вещества называются катализаторами?

2. Какова их роль в химических реакциях?

3. Какой фермент желудочного сока является основным? Какие вещества и при каких условиях он расщепляет?


Катализом называется явление ускорения реакции без изменения её общего результата. Вы знаете, что для протекания многих химических реакций необходимы высокие температура и давление. В живой клетке умеренная температура, нормальное давление. В таких условиях большинство реакций или вообще не протекали бы, или протекали бы очень медленно, если бы не подвергались воздействию катализаторов. Вещества, изменяющие скорость химической реакции, но не входящие в состав продуктов реакции, называются катализаторами .

Каталитической способностью обладают некоторые молекулы РНК. Очевидно, это свойство РНК имело очень важное значение на начальном этапе зарождения жизни на нашей планете. В настоящее время роль молекул РНК как катализаторов крайне мала, а основными биокатализаторами в клетке являются ферменты .

Все процессы в живом организме прямо или косвенно осуществляются с участием ферментов. Сейчас уже известны тысячи ферментов. Молекулы одних ферментов состоят только из белков, другие включают белок и небелковое соединение, или кофермент . В качестве коферментов выступают различные органические вещества, как правило, витамины и неорганические – ионы различных металлов.

Ферменты участвуют в процессах как синтеза, так и распада. При этом ферменты действуют в строго определённой последовательности, они специфичны для каждого вещества и ускоряют только определённые реакции. Встречаются ферменты, которые катализируют несколько реакций. Избирательность действия ферментов на разные химические вещества связана с их строением. Молекулы ферментов имеют активный центр – небольшой участок, на котором идёт данная реакция. Форма и химическое строение активного центра таковы, что с ним могут связываться только определённые молекулы в силу их комплементарности друг другу.

У некоторых ферментов в присутствии молекул определённых веществ конфигурация активного центра может изменяться, т. е. фермент таким образом может обеспечить наибольшую ферментативную активность (рис. 17).

На заключительном этапе химической реакции комплекс «фермент-вещество» распадается с образованием конечных продуктов и свободного фермента. Освободившийся при этом активный центр фермента может принимать новые молекулы вещества.

Ферменты увеличивают скорость химических реакций в тысячи и миллионы раз. Но скорость ферментативных реакций зависит от многих факторов – природы и концентрации фермента и вещества, температуры, давления, реакции среды и т. д. Для функционирования каждого фермента имеются оптимальные условия. Например, одни ферменты активны в нейтральной, другие – в кислой или щелочной среде. При температуре свыше 60 °С большинство ферментов не функционирует.



Рис. 17. Схема образования комплекса «фермент – вещество»

Катализатор. Фермент. Кофермент. Активный центр фермента

Выполните лабораторную работу.

Расщепление пероксида водорода ферментом каталазой

Цель работы : показать действие фермента каталаза на пероксид водорода (Н 2 О 2) и условия, в которых он функционирует.

Информация для учащихся

Пероксид водорода – ядовитое вещество, образующееся в клетке в процессе её жизнедеятельности. Фермент каталаза, расщепляя Н 2 О 2 на воду и кислород, играет защитную роль в клетке.

Ход работы

1. Поместите в первую из трёх пробирок кусочек сырого мяса, во вторую – кусочек сырого картофеля, в третью – кусочек варёного картофеля.

2. Прилейте в пробирки по 2 мл 3%-го раствора Н 2 О 2 .

3. Запишите наблюдаемые вами явления в каждой пробирке.

4. Сделайте вывод.

Вопросы

1. Какие вещества называются катализаторами?

2. Какую роль играют ферменты в клетке?

3. От каких факторов может зависеть скорость ферментативных реакций?

4. Почему большинство ферментов при высокой температуре теряет каталитические свойства?

5. Почему недостаток витаминов может вызвать нарушения в процессах жизнедеятельности организма?

Задания

Проанализировав знания, полученные на предыдущих уроках, объясните, почему большинство ферментов при высокой температуре теряет каталитические свойства.

§ 12. Вирусы

1. Какими свойствами обладают живые организмы?

2. Какие нуклеиновые кислоты вы знаете?

3. Какие функции выполняют нуклеиновые кислоты?


Вирусы (от лат. virus – яд) не имеют клеточного строения. Они представляют собой простейшую форму жизни на нашей планете, занимая пограничное положение между неживой и живой материей.

Рис. 18. Форма некоторых вирусов: 1 – вирус герпеса; 2 – вирус гриппа


Рис. 19. Модель вируса табачной мозаики: 1 – белковая оболочка; 2 – РНК


От неживой материи вирусы отличаются двумя свойствами: способностью воспроизводить себе подобные формы (размножаться) и обладанием наследственностью и изменчивостью.

Устроены вирусы очень просто. Каждая вирусная частица состоит из РНК или ДНК, заключённой в белковую оболочку, которую называют капсидом (рис. 19).

Проникнув в клетку, вирус изменяет в ней обмен веществ, направляя всю её деятельность на производство вирусной нуклеиновой кислоты и вирусных белков. Внутри клетки происходит самосборка вирусных частиц из синтезированных молекул нуклеиновой кислоты и белков. До момента гибели в клетке успевает синтезироваться огромное число вирусных частиц. В конечном итоге клетка гибнет, оболочка её лопается и вирусы выходят из клетки-хозяина (рис. 20).

Поселяясь в клетках живых организмов, вирусы вызывают многие опасные заболевания: у человека – грипп, оспу, корь, полиомиелит, свинку, бешенство, СПИД и многие другие; у растений – мозаичную болезнь табака, томатов, огурцов, скручивание листьев, карликовость и др.; у животных – ящур, чуму свиней и птиц, инфекционную анемию лошадей и др.



Рис. 20. Цикл развития вируса


Вирусы. Капсид. Самосборка

Вопросы

1. Какое строение имеют вирусы?

2. На основании чего вирусы относят к живым организмам?

3. Какие особенности отличают вирусы от других живых организмов?

Дополнительные сведения

Молекулярная биология изучает основные свойства и проявления жизни на молекулярном уровне. Как самостоятельная наука молекулярная биология сформировалась в 50-х гг. XX в. Её рождение часто относят к 1953 г., когда была опубликована работа американского биолога Д. Уотсона и английского физика Ф. Крика о пространственной структуре ДНК, причём биологическая функция этой молекулы была увязана с её химическим строением. Молекулярная биология имеет важное практическое значение в развитии сельского хозяйства, в микробиологической промышленности и как теоретическая основа медицины.

Задания

На обобщающем уровне обсудите значение молекулярной биологии в современном мире.

Молекулярный уровень организации живой материи составляет предмет молекулярной биологии, изучающей строение и функции входящих в состав живых организмов органических веществ – белков, углеводов, липидов, нуклеиновых кислот и др.

Белки являются основными структурными элементами клеток и регулируют протекающие в них процессы.

Нуклеиновые кислоты участвуют в передаче наследственной информации от клетки к клетке, от организма к организму.

Углеводы и липиды служат важнейшими источниками энергии, необходимой для жизнедеятельности организмов, и строительным материалом клетки.

Свойства биологических соединений зависят от строения их молекул. Углеводы состоят из углерода, водорода и кислорода. Они могут быть простыми (моносахариды) и сложными (полисахариды).

Липиды – группа жироподобных веществ, нерастворимых в воде. Большинство липидов состоит из высокомолекулярных жирных кислот и трёхатомного спирта глицерина.

Белки, или протеины, – биополимеры. Мономерами белков являются аминокислоты. Всё разнообразие белков создаётся различными сочетаниями всего 20 аминокислот.

Молекулы белков могут принимать различную пространственную конфигурацию: первичную, вторичную, третичную и четвертичную структуры. Такая сложность строения молекул белков связана с многочисленными функциями, выполняемыми этими биополимерами. Многие белки являются ферментами, т. е. биокатализаторами.

Нуклеиновые кислоты – биополимеры, состоящие из мономеров-нуклеотидов. В состав каждого нуклеотида входит азотистое основание, углевод (рибоза или дезоксирибоза) и остаток фосфорной кислоты. Различают два типа нуклеиновых кислот – РНК и ДНК.

АТФ является нуклеотидом, состоящим из азотистого основания аденина, углевода рибозы и трёх остатков фосфорной кислоты. АТФ – универсальный источник энергии для всех реакций, протекающих в клетке.

Вирусы – переходная форма между живой и неживой материей. Они состоят из РНК или ДНК и белковой оболочки.

Глава 2. Клеточный уровень

Клетка – элементарная единица жизни на Земле. Все живые существа на Земле, за исключением вирусов, построены из клеток и могут быть одноклеточными (бактерии, некоторые водоросли, простейшие) или многоклеточными. Клетка обладает всеми признаками живого организма: растёт, размножается, обменивается с окружающей средой веществами и энергией, реагирует на внешние раздражители.


Из этой главы вы узнаете

Как устроена клетка;

Каковы функции органоидов клетки;

Как клетка получает энергию;

Как клетка синтезирует вещества, необходимые ей для жизнедеятельности;

Как клетка делится.

§ 13. Клеточный уровень: общая характеристика

1. Что общего и какие различия между клетками растений и бактерий?

2. Все ли организмы на Земле имеют клеточное строение?


Клеточный уровень организации живого является предметом изучения отдельной биологической науки – цитологии. Она исследует строение и функционирование клеток, закономерности их специализации в ходе развития организмов, механизмы деления клеток, особенности протекающих в них химических процессов.

Химический состав клетки. Несмотря на различия в строении и выполняемых функциях все клетки состоят практически из одних и тех же химических элементов. Сходство элементарного химического состава клеток разных организмов указывает на единство живой природы. Примерно 98 % от массы любой клетки приходится на четыре элемента: кислород (75 %), углерод (15 %), водород (8 %) и азот (3 %). На остальные более 70 элементов, которые могут входить в состав клетки, проходится 2 % от её массы.

Со строением и функциями белков, жиров, углеводов, нуклеиновых кислот и других органических соединений, входящих в состав клетки, вы познакомились, изучая молекулярный уровень организации живых систем.

Кроме органических, в клетке присутствуют и неорганические вещества – вода и минеральные соли.

Вода в клетке в количественном отношении занимает первое место среди всех других химических соединений. Чем выше интенсивность обмена веществ в той или иной клетке, тем больше в ней содержится воды.

Вода выполняет различные функции: сохранение объёма, упругости клетки, растворение различных веществ, большая часть химических реакций в клетке протекает в водных растворах.

Минеральные вещества в клетке могут находиться в виде растворённых солей либо в твёрдом состоянии. Например, в цитоплазме практически любой клетки имеются кристаллические включения, состоящие из слаборастворимых солей.

Ионы солей входят в состав цитоплазмы клеток, определяют её кислотно-щелочной баланс, активизируют многие ферменты.

Соединения азота, фосфора, кальция и других неорганических веществ используются для синтеза молекул органических веществ.

Соли кальция и фосфора обеспечивают прочность костей, ногтей, зубов. Катионы кальция принимают участие в регуляции сердечных сокращений и свёртываемости крови.

Методы изучения клетки. Исторически первым таким методом изучения клетки стала световая микроскопия . Первые микроскопы были изобретены в начале XVII в. и увеличивали в 20–35 раз. Современные световые микроскопы увеличивают изучаемый объект в 2000–2500 раз. В 30-х гг. XX в. появилась электронная микроскопия . Именно в это время был изобретён электронный микроскоп, который позволяет достигать увеличения до 1 000 000 раз (рис. 21).

Для выделения митохондрий, рибосом, пластид и других органоидов клетки используют метод центрифугирования . Для этого разрушенные клетки помещают в пробирки и вращают с очень большой скоростью в специальных приборах – центрифугах.



Рис. 21. Микроскопы 1 – микроскоп XVII в.; 2 – современные световые микроскопы; 3 – электронный микроскоп


В настоящее время учёные используют и другие физические и химические методы, позволяющие выделять и исследовать различные виды молекул, входящих в состав клетки.

Основные положения клеточной теории. Клетки различных органов животных, растений, грибов внешне не очень похожи друг на друга. Ну что общего, казалось бы, между нейроном нашего мозга, стрекательной клеткой гидры, инфузорией туфелькой и клеткой листа берёзы? И тем не менее между этими, да и всеми другими клетками, гораздо больше сходства, чем различий. И хотя многие учёные пользовались микроскопами для изучения живых существ, техника XVII–XVIII вв. была ещё очень несовершенной. Лишь в начале XIX в. Р. Броун смог увидеть внутри клеток листа плотное образование, которое он назвал ядром . К середине XIX в. немецкие учёные Т. Шванн и М. Шлейден, обобщив сведения, полученные многими исследователями, сформулировали клеточную теорию , одну из основных в современной биологии.

1. Все живые существа, от одноклеточных до крупных растительных и животных организмов, состоят из клеток.

2. Все клетки сходны по строению, химическому составу и жизненным функциям.

3. Несмотря на то что в многоклеточных организмах отдельные клетки специализируются на выполнении какой-то определённой «работы», они способны к самостоятельной жизнедеятельности, т. е. могут питаться, расти, размножаться.

М. Шлейден и Т. Шванн ошибочно полагали, что клетки могут самопроизвольно зарождаться в жидкостях или во множестве рождаться внутри старых клеток. Однако немецкий биолог и врач Р. Вирхов доказал, что клетки способны делиться, и предложил следующее дополнение к клеточной теории.

4. Все клетки образуются из клетки.

Таким образом, клетка – элементарная единица живого, лежащая в основе строения, развития и размножения всех живых организмов.

Клетка. Методы изучения клетки: световая микроскопия и электронная микроскопия, центрифугирование. Клеточная теория

Вопросы

1. Какие вопросы рассматриваются на клеточном уровне?

2. Что характерно для химического состава клетки?

3. Какие методы используются при изучении клетки?

4. Кто разработал клеточную теорию?

5. Почему клетку назвали клеткой?

6. Какие свойства объединяют все клетки живых организмов?

Задания

Используя знания, полученные на уроках физики, объясните, почему электронные микроскопы дают большее увеличение, чем световые.

§ 14. Общие сведения о клетках. Клеточная мембрана

1. Чем различаются оболочки животной и растительной клеток?

2. Чем покрыта клетка гриба?


Клетки, несмотря на свои малые размеры, устроены очень сложно. Они содержат структуры для потребления питательных веществ и энергии, выделения ненужных продуктов обмена, размножения. Все эти стороны жизнедеятельности клетки должны быть тесно связаны друг с другом.

Исследования, проводившиеся в течение многих десятилетий и не прекращающиеся до сих пор, позволяют нарисовать достаточно полную картину строения клетки. Мы можем связать отдельные функции клетки с множеством различных мельчайших образований, обнаруженных в ней.

Внутреннее полужидкое содержимое клетки получило название цитоплазмы . В цитоплазме большинства клеток находится ядро , координирующее жизнедеятельность клетки, и многочисленные органоиды , выполняющие разнообразные функции.

Клеточная мембрана отделяет внутреннее содержание клетки от внешней среды. Она защищает цитоплазму и ядро от повреждений, обеспечивает связь клеток между собой, избирательно пропускает внутрь клетки необходимые вещества и выводит из клетки продукты обмена.

Строение мембраны у всех клеток одинаково. Её толщина составляет приблизительно 8 нм (1 нм = 10 −9 м), и поэтому увидеть мембрану в световой микроскоп невозможно. Данные, полученные при помощи электронного микроскопа, позволили заключить, что основу мембраны составляет двойной слой молекул липидов (рис. 22), в котором расположены многочисленные молекулы белков. Некоторые белки находятся на поверхности липидного слоя, другие пронизывают оба слоя липидов насквозь. Специальные белки образуют тончайшие каналы, по которым внутрь клетки или из неё могут проходить ионы калия, натрия, кальция и некоторые другие ионы, имеющие маленький диаметр. Однако более крупные частицы через мембранные каналы пройти не могут. Молекулы пищевых веществ – белки, углеводы, липиды – попадают в клетку при помощи фагоцитоза или пиноцитоза.

В том месте, где пищевая частица прикасается к наружной мембране клетки, образуется впячивание, и частица попадает внутрь клетки, окружённая мембраной. Этот процесс называется фагоцитозом (рис. 23, А ). Внутрь образовавшегося пузырька проникают пищеварительные ферменты, и возникает пищеварительная вакуоль . Путём фагоцитоза питаются простейшие. У многоклеточных организмов некоторые лейкоциты крови – довольно крупные амёбовидные клетки, передвигаясь в крови и лимфе, также способны активно захватывать и переваривать чужеродные бактерии. Их называют фагоцитами .



Рис. 22. Строение клеточной мембраны



Рис. 23. Схемы фагоцитоза (А) и пиноцитоза (Б)


Так как клетки растений поверх наружной клеточной мембраны покрыты плотным слоем клетчатки, они не могут захватывать вещества при помощи фагоцитоза.

Пиноцитоз отличается от фагоцитоза лишь тем, что в этом случае впячивание наружной мембраны захватывает не твёрдые частицы, а капельки жидкости с растворёнными в ней веществами (рис. 23, Б ). Это один из основных механизмов проникновения веществ в клетку.

Цитоплазма. Ядро. Органоиды. Мембрана. Фагоцитоз. Пиноцитоз

Вопросы

1. Каковы функции наружной мембраны клетки?

2. Какими способами различные вещества могут проникать внутрь клетки?

3. Чем пиноцитоз отличается от фагоцитоза?

4. Почему у растительных клеток нет фагоцитоза?

Задания

1. Составьте план параграфа.

2. Проанализировав текст параграфа и рисунки 22 и 23, установите взаимосвязь между строением и функциями клеточной мембраны.

"Введение в общую биологию и экологию. 9 класс". А.А. Каменский (гдз)

Характеристика клетки. Клеточная мембрана

Вопрос 1. Каковы функции наружной мембраны клетки?
Наружная клеточная мембрана состоит из двойного липидного слоя и молекул белков, часть которых расположена на поверхности, а некоторые пронизывают оба слоя липидов насквозь. Функции плазматической мембраны:
1. Отграничивающая. Плазматические мембраны образуют замкнутые системы, нигде не прерываясь, т.е. они ни имеют свободных концов, таким образом, они отделяют внутреннее содержимое от окружающей среды. Например, оболочка клетки защищает содержимое цитоплазмы от физических и химических повреждений.
2. Транспортная – одна из важнейших функций связана со способностью мембраны пропускать в клетку или из нее различные вещества, это необходимо для поддержания постоянства ее состава, т.е. гомеостаза (греч. homos – подобный и stasis – состояние).
3. Контактная. В составе тканей и органов между клетками образуются сложные специальные структуры – межклеточные контакты.
4. Плазматическая мембрана многих клеток может образовывать специальные структуры (микроворсинки, реснички, жгутики).
5. На плазматической мембране создается разность электрических потенциалов. Например, гликопротеины эритроцитов млекопитающих создают отрицательный заряд на их поверхности, это препятствует их агглютинации (склеиванию).
6. Рецепторная. Обеспечивается молекулами интегральных белков, имеющих снаружи полисахаридные концы. В мембранах имеется большое число рецепторов - специальных белков, роль которых заключается в передаче сигналов извне внутрь клетки. Гликопротеины участвуют в распознавании отдельных факторов внешней среды и в ответной реакции клеток на эти факторы. Например, яйцеклетка и сперматозоид узнают друг друга по гликопротеинам, которые подходят друг к другу как отдельные элементы цельной структуры (стереохимическая связь по типу «ключ к замку») – это этап, предшествующий оплодотворению.
7. Плазматическая мембрана может участвовать в синтезе и катализе. Мембрана является основой для точного размещения ферментов. В слое гликокаликса могут осаждаться гидролитические ферменты, которые расщепляют различные биополимеры и органические молекулы, осуществляя примембранное или внеклеточное расщепление. Так идет внеклеточное расщепление у гетеротрофных бактерий и грибов. У млекопитающих, например, в кишечном эпителии, в зоне щеточной каемки всасывающего эпителия, обнаруживается большое количество разнообразных ферментов (амилаза, липаза, различные протеиназы, экзогидролазы и др.), т.е. осуществляется пристеночное пищеварение.

Вопрос 2. Какими способами различные вещества могут проникать внутрь клетки?
Сквозь наружную клеточную мембрану вещества могут проникать несколькими способами. Во-первых, через тончайшие каналы, Образованные молекулами белков, могут проходить внутрь клетки ионы веществ, имеющие небольшие размеры, например ионы натрия, калия, кальция. Это так называемый Пассивный транспорт идет без затрат энергии путем диффузии, осмоса и облегченной диффузии. Во-вторых, в клетку могут попасть вещества путем фагоцитоза или пиноцитоза. Крупные молекулы биополимеров поступают через мембрану благодаря фагоцитозу, явлению, впервые описанному И.И. Мечниковым. Процесс захвата и поглощения капелек жидкости происходит путем пиноцитоза. Путем фагоцитоза и пиноцитоза обычно в клетку проникают пищевые частицы.

Вопрос 3. Чем пиноцитоз отличается от фагоцитоза?
Фагоцитоз (греч. рhagos – пожирать, cytos – вместилище) – это захват и поглощение клеткой крупных частиц (иногда целых клеток и их частиц). При этом плазматическая мембрана образует выросты, окружает частицы и в виде вакуолей перемещает их внутрь клетки. Этот процесс связан с затратами мембраны и энергии АТФ.
Пиноцитоз(греч. pino – пить) – поглощение капелек жидкости с растворенными в ней веществами. Осуществляется за счет образования впячиваний на мембране и формирования пузырьков, окруженных мембраной, и перемещения их внутрь. Этот процесс также связан с затратами мембраны и энергии АТФ. Всасывающая функция эпителия кишечника обеспечивается путем пиноцитоза.
Таким образом, при фагоцитозе клетка поглощает твёрдые частички пищи, а при пиноцитозе – капельки жидкости. Если клетка перестает синтезировать АТФ, то процессы пино- и фагоцитоза полностью прекращаются.

На основании чего вирусы относят к живым организмам?

Вирусы представляют собой простейшую форму жизни на Земле и занимают пограничное положение между неживой и живой материей. Так как вирусы обладают наследственностью и изменчивостью, а также способностью к размножению, их можно отнести к живым организмам. Кроме того, в состав вируса входят нуклеиновые кислоты и белки, свойственные именно живым организмам.

Особенности вирусов

Какие особенности отличают вирусы от других живых организмов?

Клеточная теория

Кто разработал клеточную теорию?

Клеточную теорию сформулировали в середине XIX в. немецкие ученые Теодор Шванн и Матиас Шлейден. Они суммировали результаты многих известных к тому времени открытий. Основные теоретические выводы, получившие название клеточной теории, Т. Шванн изложил в своей книге «Микроскопические исследования о соответствии в структуре и росте животных и растений» (1839). Главная идея книги - ткани растений и животных состоят из клеток. Клетка - единица строения живых организмов.

Термин «клетка»

Почему клетку назвали клеткой?

Голландский ученый Роберт Гук, используя свою конструкцию увеличительного прибора, наблюдал тонкий срез пробки. Его поразило то, что пробка оказалась построенной из ячеек, напоминавших пчелиные соты. Эти ячейки Гук назвал клетками.

Общие свойства всех клеток

Какие свойства объединяют все клетки живых организмов?

Клетки обладают всеми признаками живого. Они способны к росту, размножению, обмену веществ и превращению энергии, обладают наследственностью и изменчивостью, реагируют на внешние раздражители.

Функции наружной мембраны клетки

Каковы функции наружной мембраны клетки?

Наружная клеточная мембрана состоит из двойного липидного слоя и молекул белков, часть которых расположена на поверхности, а некоторые пронизывают оба слоя липидов насквозь. Наружная клеточная мембрана выполняет защитную функцию, отделяя клетку от внешней среды, препятствует повреждению ее содержимого. Кроме того, наружная клеточная мембрана обеспечивает транспорт веществ внутрь клетки и из нее, позволяет клеткам взаимодействовать между собой.

Пути попадания веществ в клетку

Какими способами различные вещества могут проникать внутрь клетки?

Сквозь наружную клеточную мембрану вещества могут проникать несколькими способами. Во-первых, через тончайшие каналы, образованные молекулами белков, могут проходить внутрь клетки ионы веществ, имеющие небольшие размеры, например ионы натрия, калия, кальция. Во-вторых, в клетку могут попасть вещества путем фагоцитоза или пиноцитоза. Таким путем обычно проникают пищевые частицы.

Отличие пиноцитоза и фагоцитоза

Чем пиноцитоз отличается от фагоцитоза?

При пиноцитозе выпячивание наружной мембраны захватывает капельки жидкости, а при фагоцитозе - твердые частицы.

Фагоцитоз у растений

Почему у растительных клеток нет фагоцитоза?

При фагоцитозе в том месте, где пищевая частица прикасается к наружной мембране клетки, образуется впячивание, и частица попадает внутрь клетки, окруженная мембраной. У растительной клетки поверх клеточной мембраны имеется плотная непластичная оболочка из клетчатки, что препятствует фагоцитозу.

Функции ядра клетки

Каковы функции ядра клетки?

В ядре содержится вся информация о процессах жизнедеятельности, росте и развитии клетки. Эта информация хранится в ядре в виде молекул ДНК, входящих в состав хромосом. Поэтому ядро координирует и регулирует синтез белка, а следовательно, все процессы обмена веществ и энергии, протекающие в клетке.

Просмотров