Окисление алкенов перманганатом в щелочной среде. Алкены II.Окислительное расщепление алкенов. Виды изомерии алкенов

Составление уравнений окислительно-восстановительных реакций с участием органических веществ

В связи с введением в качестве единственной формы итоговой аттестации выпускников средней школы единого государственного экзамена (ЕГЭ) и переходом старшей школы на профильное обучение все большую актуальность приобретает подготовка старшеклассников к выполнению наиболее “дорогих” в балльном отношении заданий части “С” теста ЕГЭ по химии. Несмотря на то, что пять заданий части “С” считаются разными: химические свойства неорганических веществ, цепочки превращений органических соединений, расчетные задачи, – все они в той или иной мере связаны именно с окислительно-восстановительными реакциями (ОВР). Если усвоены основные знания теории ОВР, то можно правильно выполнить первое и второе задания полностью, а третье – частично. На наш взгляд, значительная часть успеха при выполнении части “С” заключается именно в этом. Опыт показывает, что если, изучая неорганическую химию, ученики достаточно хорошо справляются с заданиями по написанию уравнений ОВР, то аналогичные задания по органической химии вызывают у них большие трудности. Поэтому на протяжении изучения всего курса органической химии в профильных классах мы стараемся сформировать у старшеклассников навыки составления уравнений ОВР.

При изучении сравнительной характеристики неорганических и органических соединений мы знакомим учащихся с использованием степени окисления (с.о.) (в органической химии прежде всего углерода) и способами ее определения:

1) вычисление средней с.о. углерода в молекуле органического вещества;

2) определение с.о. каждого атома углерода.

Уточняем, в каких случаях лучше использовать тот или иной способ.

Статья опубликована при поддержке компании "ГЕО-Инжиниринг", представляющей на рынке продукцию под брендом "ProfKresla". Сфера деятельности компании - производство, продажа и установка кресел и стульев для различных залов. Высокий профессионализм сотрудников и собственные производственные мощности позволяют быстро и качественно реализовывать проекты любой степени сложности. Всю продукцию под брендом "ProfKresla", будь тоТеатральные кресла , сидения для залов ожидания или стулья для учебных заведений, отличают современный и эргономичный дизайн, а также высокая износостойкость, прочность и комфорт. Из огромного ассортимента продукции, представленного в каталоге на сайте profkresla.ru, Вы всегда сможете подобрать модели, наилучшим образом соответствующие корпоративному стилю, принятому в Вашей компании. Если же у Вас все-таки возникнут трудности с выбором, то специалисты компании всегда готовы дать консультацию, помочь определиться с моделью, после чего подготовить проект, на месте произвести все необходимые замеры и установку.

П ри изучении темы “Алканы” показываем, что процессы окисления, горения, галогенирования, нитрования, дегидрирования, разложения относятся к окислительно-восстановительным процессам. При написании уравнений реакций горения и разложения органических веществ лучше использовать среднее значение с.о. углерода. Например:

Обращаем внимание на первую половину электронного баланса: у атома углерода в дробном значении с.о. знаменатель равен 4, поэтому расчет передачи электронов ведем по этому коэффициенту.

В остальных случаях при изучении темы “Алканы” определяем значения с.о. каждого атома углерода в соединении, обращая при этом внимание учащихся на последовательность замещения атомов водорода у первичных, вторичных, третичных атомов углерода:

Таким образом мы подводим учащихся к выводу, что в начале протекает процесс замещения у третичных, затем – у вторичных, и, в последнюю очередь – у первичных атомов углерода.

П ри изучении темы “Алкены” рассматриваем процессы окисления в зависимости от строения алкена и среды протекания реакции.

При окислении алкенов концентрированным раствором перманганата калия KMnO 4 в кислой среде (жесткое окисление) происходит разрыв - и -связей с образованием карбоновых кислот, кетонов и оксида углерода(IV). Эта реакция используется для определения положения двойной связи.

Если двойная связь находится на конце молекулы (например, у бутена-1), то одним из продуктов окисления является муравьиная кислота, легко окисляющаяся до углекислого газа и воды:

Подчеркиваем, что если в молекуле алкена атом углерода при двойной связи содержит два углеродных заместителя (например, в молекуле 2-метилбутена-2), то при его окислении происходит образование кетона, т. к. превращение такого атома в атом карбоксильной группы невозможно без разрыва C–C-связи, относительно устойчивой в этих условиях:

Уточняем, что если молекула алкена симметрична и двойная связь содержится в середине молекулы, то при окислении образуется только одна кислота:

Сообщаем, что особенностью окисления алкенов, в которых атомы углерода при двойной связи содержат по два углеродных радикала, является образование двух кетонов:

Рассматривая окисление алкенов в нейтральной или слабощелочной средах, акцентируем внимание старшеклассников на том, что в таких условиях окисление сопровождается образованием диолов (двухатомных спиртов), причем гидроксильные группы присоединяются к тем атомам углерода, между которыми существовала двойная связь:

В аналогичном плане рассматриваем окисление ацетилена и его гомологов в зависимости от того, в какой среде протекает процесс. Так, уточняем, что в кислой среде процесс окисления сопровождается образованием карбоновых кислот:

Реакция используется для определения строения алкинов по продуктам окисления:

В нейтральной и слабощелочной средах окисление ацетилена сопровождается образованием соответствующих оксалатов (солей щавелевой кислоты), а окисление гомологов – разрывом тройной связи и образованием солей карбоновых кислот:

В се правила отрабатываются с учащимися на конкретных примерах, что приводит к лучшему усвоению ими теоретического материала. Поэтому при изучении окисления аренов в различных средах ученики могут самостоятельно высказать предположения, что в кислой среде следует ожидать образования кислот, а в щелочной – солей. Учителю останется только уточнить, какие продукты реакции образуются в зависимости от строения соответствующего арена.

Показываем на примерах, что гомологи бензола с одной боковой цепью (независимо от ее длины) окисляются сильным окислителем до бензойной кислоты по -углеродному атому. Гомологи бензола при нагревании окисляются перманганатом калия в нейтральной среде с образованием калиевых солей ароматических кислот.

5C 6 H 5 –CH 3 + 6KMnO 4 + 9H 2 SO 4 = 5C 6 H 5 COOH + 6MnSO 4 + 3K 2 SO 4 + 14H 2 O,

5C 6 H 5 –C 2 H 5 + 12KMnO 4 + 18H 2 SO 4 = 5C 6 H 5 COOH + 5CO 2 + 12MnSO 4 + 6K 2 SO 4 + 28H 2 O,

C 6 H 5 –CH 3 + 2KMnO 4 = C 6 H 5 COOK + 2MnO 2 + KOH + H 2 O.

Подчеркиваем, что если в молекуле арена несколько боковых цепей, то в кислой среде каждая из них окисляется по a-углеродному атому до карбоксильной группы, в результате чего образуются многоосновные ароматические кислоты:

П олученные навыки составления уравнений ОВР для углеводородов позволяют использовать их при изучении раздела “Кислородсодержащие соединения”.

Так, при изучении темы “Спирты” учащиеся самостоятельно составляют уравнения окисления спиртов, используя следующие правила:

1) первичные спирты окисляются до альдегидов

3CH 3 –CH 2 OH + K 2 Cr 2 O 7 + 4H 2 SO 4 = 3CH 3 –CHO + K 2 SO 4 + Cr 2 (SO 4) 3 + 7H 2 O;

2) вторичные спирты окисляются до кетонов

3) для третичных спиртов реакция окисления не характерна.

В целях подготовки к ЕГЭ учителю целесообразно дать дополнительные сведения к указанным свойствам, что, несомненно, будет полезным для учащихся.

При окислении метанола подкисленным раствором перманганата калия или дихромата калия образуется CO 2 , первичные спирты при окислении в зависимости от условий протекания реакции могут образовать не только альдегиды, но и кислоты. Например, окисление этанола дихроматом калия на холоду заканчивается oбразованием уксусной кислоты, а при нагревании – ацетальдегида:

3CH 3 –CH 2 OH + 2K 2 Cr 2 O 7 + 8H 2 SO 4 = 3CH 3 –COOH + 2K 2 SO 4 + 2Cr 2 (SO 4) 3 + 11H 2 O,

3CH 3 –CH 2 OH + K 2 Cr 2 O 7 + 4H 2 SO 4 3CH 3 –CHO + K 2 SO 4 + Cr 2 (SO 4) 3 + 7H 2 O.

Вновь напомним учащимся о влиянии среды на продукты реакций окисления спиртов, а именно: горячий нейтральный раствор KMnO 4 окисляет метанол до карбоната калия, а остальные спирты – до солей соответствующих карбоновых кислот:

При изучении темы “Альдегиды и кетоны” акцентируем внимание учащихся на том, что альдегиды легче, чем спирты, окисляются в соответствующие карбоновые кислоты не только под действием сильных окислителей (кислород воздуха, подкисленные растворы KMnO 4 и K 2 Cr 2 O 7), но и под действием слабых (аммиачный раствор оксида серебра или гидроксида меди(II)):

5CH 3 –CHO + 2KMnO 4 + 3H 2 SO 4 = 5CH 3 –COOH + 2MnSO 4 + K 2 SO 4 + 3H 2 O,

3CH 3 –CHO + K 2 Cr 2 O 7 + 4H 2 SO 4 = 3CH 3 –COOH + Cr 2 (SO 4) 3 + K 2 SO 4 + 4H 2 O,

CH 3 –CHO + 2OH CH 3 –COONH 4 + 2Ag + 3NH 3 + H 2 O.

Особое внимание уделяем окислению метаналя аммиачным раствором оксида серебра, т.к. в этом случае образуется карбонат аммония, а не муравьиная кислота:

HCHО + 4OH = (NH 4) 2 CO 3 + 4Ag + 6NH 3 + 2H 2 O.

Как показывает наш многолетний опыт, предложенная методика обучения старшеклассников составлению уравнений ОВР с участием органических веществ повышает их итоговый результат ЕГЭ по химии на несколько баллов.

Описание презентации ОКИСЛИТЕЛЬНО-ВОССТАНОВИТЕ ЛЬНЫЕ РЕАКЦИИ С УЧАСТИЕМ ОРГАНИЧЕСКИХ ВЕЩЕСТВ по слайдам

ОКИСЛИТЕЛЬНО-ВОССТАНОВИТЕ ЛЬНЫЕ РЕАКЦИИ С УЧАСТИЕМ ОРГАНИЧЕСКИХ ВЕЩЕСТВ Кочулева Л. Р. , учитель химии МОБУ «Лицей № 9» г. Оренбурга

В органической химии окисление определяют как процесс, при котором в результате превращения функциональной группы соединение переходит из одной категории в более высокую: алкен спирт альдегид (кетон) карбоновая кислота. Большинство реакций окисления включает введение в молекулу атома кислорода или образование двойной связи с уже имеющимся атомом кислорода за счет потери атомов водорода.

ОКИСЛИТЕЛИ Для окисления органических веществ обычно используют соединения переходных металлов, кислород, озон, пероксиды и соединения серы, селена, иода, азота и другие. Из окислителей на основе переходных металлов преимущественно применяют соединения хрома (VI) и марганца (VII), (VI) и (IV). Наиболее распространенные соединения хрома (VI) – это раствор дихромата калия K 2 Cr 2 O 7 в серной кислоте, раствор триоксида хрома Cr. O 3 в разбавленной серной кислоте.

ОКИСЛИТЕЛИ При окислении органических веществ хром (VI) в любой среде восстанавливается до хрома (III), однако, окисление в щелочной среде в органической химии не находит практического применения. Перманганат калия KMn. O 4 в разных средах проявляет различные окислительные свойства, при этом сила окислителя увеличивается в кислой среде. Манганат калия K 2 Mn. O 4 и оксид марганца (IV) Mn. O 2 проявляют окислительные свойства только в кислой среде

АЛКЕНЫ В зависимости от природы окислителя и условий реакции образуются различные продукты: двухатомные спирты, альдегиды, кетоны, карбоновые кислоты При окислении водным растворoм KMn. O 4 при комнатной температуре происходит разрыв π-связи и образуются двухатомные спирты (реакция Вагнера): Обесцвечивание раствора перманганата калия — качественная реакция на кратную связь

АЛКЕНЫ Окисление алкенов концентрированным раствором перманганата калия KMn. O 4 или дихромата калия K 2 Cr 2 O 7 в кислой среде сопровождается разрывом не только π-, но и σ-связи Продукты реакции – карбоновые кислоты и кетоны (в зависимости от строения алкена) С помощью этой реакции по продуктам окисления алкена можно определить положение двойной связи в его молекуле:

АЛКЕНЫ 5 СН 3 –СН=СН-СН 3 +8 KMn. O 4 +12 H 2 SO 4 → 10 CH 3 COOH +8 Mn. SO 4+4 K 2 SO 4+12 H 2 O 5 СН 3 –СН=СН-CH 2 -СН 3 +8 KMn. O 4 +12 H 2 SO 4 → 5 CH 3 COOH +5 CH 3 CH 2 COOH +8 Mn. SO 4 +4 K 2 SO 4 +12 H 2 O CH 3 -CH 2 -CH=CH 2 +2 KMn. O 4 +3 H 2 SO 4 → CH 3 CH 2 COOH +CO 2 +2 Mn. SO 4 +K 2 SO 4 +4 H 2 O

АЛКЕНЫ Алкены разветвленного строения, содержащие углеводородный радикал у атома углерода, соединенного двойной связью, при окислении образуют смесь карбоновой кислоты и кетона:

АЛКЕНЫ 5 CH 3 -CH=C-CH 3 + 6 KMn. O 4 +9 H 2 SO 4 → │ CH 3 5 CH 3 COOH + 5 O=C-CH 3 + 6 Mn. SO 4 + 3 K 2 SO 4+ │ CH 3 9 H 2 O

АЛКЕНЫ Алкены разветвленного строения, содержащие углеводородные радикалы у обоих атомов углерода, соединенных двойной связью, при окислении образуют смесь кетонов:

АЛКЕНЫ 5 CH 3 -C=C-CH 3 + 4 KMn. O 4 +6 H 2 SO 4 → │ │ CH 3 10 O=C-CH 3 + 4 Mn. SO 4 + 2 K 2 SO 4+6 H 2 O │ CH

АЛКЕНЫ В результате каталитического окисления алкенов кислородом воздуха получают эпоксиды: В жестких условиях при сжигании на воздухе алкены, как и другие углеводороды, сгорают с образованием углекислого газа и воды: С 2 Н 4 + 3 О 2 → 2 СО 2 + 2 Н 2 О

АЛКАДИЕНЫ CH 2 =CH−CH=CH 2 В окисляемой молекуле две концевых двойных связи, следовательно, образуются две молекулы углекислого газа. Углеродный скелет не разветвленный, поэтому при окислении 2 -го и 3 -го углеродных атомов образуются карбоксильные группы CH 2 =CH−CH=CH 2 + 4 KMn. O 4 + 6 H 2 SO 4 → 2 СО 2 + НСОО−СООН + 4 Mn. SO 4 +2 K 2 SO 4 + 8 Н 2 О

АЛКИНЫ Алкины легко окисляются перманганатом калия и дихроматом калия по месту кратной связи При действии на алкины водным раствором KMn. O 4 происходит его обесцвечивание (качественная реакция на кратную связь) При взаимодействии ацетилена с водным раствором перманганата калия образуется соль щавелевой кислоты (оксалат калия):

АЛКИНЫ Ацетилен может быть окислен перманганатом калия в нейтральной среде до оксалата калия: 3 CH≡CH +8 KMn. O 4 → 3 KOOC – COOK +8 Mn. O 2 +2 КОН +2 Н 2 О В кислотной среде окисление идет до щавелевой кислоты или углекислого газа: 5 CH≡CH +8 KMn. O 4 +12 H 2 SO 4 → 5 HOOC – COOH +8 Mn. SO 4 +4 К 2 SO 4 +12 Н 2 О CH≡CH + 2 KMn. O 4 +3 H 2 SO 4 =2 CO 2 + 2 Mn. SO 4 + 4 H 2 O + K 2 SO

АЛКИНЫ Окисление перманганатам калия в кислой среде при нагревании сопровождается разрывом углеродной цепи по месту тройной связи и приводит к образованию кислот: Окисление алкинов, содержащих тройную связь у крайнего атома углерода, сопровождается в этих условиях образованием карбоновой кислоты и СО 2:

АЛКИНЫ CH 3 C≡CCH 2 CH 3 + K 2 Cr 2 O 7 + 4 H 2 SO 4→CH 3 COOH+CH 3 CH 2 COOH + Cr 2(SO 4)3+K 2 SO 4+3 H 2 O 3 CH 3 C≡CH+4 K 2 Cr 2 O 7 +16 H 2 SO 4 →CH 3 COOH+3 CO 2++ 4 Cr 2(SO 4)3 + 4 K 2 SO 4 +16 H 2 O CH 3 C≡CH+8 KMn. O 4+11 KOH →CH 3 COOK +K 2 CO 3 + 8 K 2 Mn. O 4 +6 H 2 O

ЦИКЛОАЛКАНЫ И ЦИКЛОАЛКЕНЫ При действии сильных окислителей (KMn. O 4 , K 2 Cr 2 O 7 и др.) циклоалканы и циклоалкены образуют двухосновные карбоновые кислоты с тем же числом атомов углерода: 5 C 6 H 12 + 8 KMn. O 4 + 12 H 2 SO 4 → 5 HOOC(CH 2) 4 COOH + 4 K 2 SO 4 + 8 Mn. SO 4 +12 H 2 O

АРЕНЫ Бензол Устойчив к окислителям при комнатной температуре Не реагирует с водными растворами перманганата калия, дихромата калия и других окислителей Можно окислить озоном с образованием диальдегида:

АРЕНЫ Гомологи бензола Окисляются относительно легко. Окислению подвергается боковая цепь, у толуола – метильная группа. Мягкие окислители (Mn. O 2) окисляют метильную группу до альдегидной группы: C 6 H 5 CH 3+2 Mn. O 2+H 2 SO 4→C 6 H 5 CHO+2 Mn. SO 4+3 H 2 O

АРЕНЫ Более сильные окислители – KMn. O 4 в кислой среде или хромовая смесь при нагревании окисляют метильную группу до карбоксильной: В нейтральной или слабощелочной среде образуется не сама бензойная кислота, а ее соль — бензоат калия:

АРЕНЫ В кислой среде 5 С 6 Н 5 СН 3 +6 КMn. O 4 +9 H 2 SO 4 → 5 С 6 Н 5 СООН+6 Mn. SO 4 +3 K 2 SO 4 + 14 H 2 O В нейтральной среде C 6 H 5 CH 3 +2 KMn. O 4 = C 6 H 5 COOK + 2 Mn. O 2 + KOH + H 2 O В щелочной среде C 6 H 5 CH 2 CH 3 + 4 KMn. O 4 = C 6 H 5 COOK + K 2 CO 3 + 2 H 2 O + 4 Mn. O 2 + KOH

АРЕНЫ Под действием сильных окислителей (KMn. O 4 в кислой среде или хромовая смесь) боковые цепи окисляются независимо от строения: атом углерода, непосредственно связанный с бензольным ядром, до карбоксильной группы, остальные атомы углерода в боковой цепи — до СО 2 Окисление любого гомолога бензола с одной боковой цепью под действием KMn. O 4 в кислой среде или хромовой смеси приводит к образованию бензойной кислоты:

АРЕНЫ Гомологи бензола, содержащие несколько боковых цепей, при окислении образуют соответствующие многоосновные ароматические кислоты:

АРЕНЫ В нейтральной или слабощелочной среде при окислении перманганатом калия образуются соль карбоновой кислоты и карбонат калия:

АРЕНЫ 5 C 6 H 5 -C 2 H 5 + 12 KMn. O 4 + 18 H 2 SO 4 -> 5 C 6 H 5 -COOH + 5 CO 2 + 12 Mn. SO 4 + 6 K 2 SO 4 + 28 H 2 O C 6 H 5 -C 2 H 5 +4 KMn. O 4→ C 6 H 5 -COOК +К 2 СО 3 +КОН +4 Mn. O 2 +2 H 2 O 5 C 6 H 5 -CH(CH 3)2 + 18 KMn. O 4 + 27 H 2 SO 4 —-> 5 C 6 H 5 -COOH + 10 CO 2 + 18 Mn. SO 4 + 9 K 2 SO 4 + 42 H 2 O 5 CH 3 -C 6 H 4 -CH 3 +12 KMn. O 4 +18 H 2 SO 4 → 5 C 6 H 4(COOН)2 +12 Mn. SO 4 +6 K 2 SO 4 + 28 H 2 O CH 3 -C 6 H 4 -CH 3 + 4 KMn. O 4 → C 6 H 4(COOK)2 +4 Mn. O 2 +2 KOH+2 H 2 O

СТИРОЛ Окисление стирола (винилбензола) раствором перманганата калия в кислой и нейтральной среде: 3 C 6 H 5 −CH═CH 2 + 2 KMn. O 4 + 4 H 2 O → 3 C 6 H 5 −CH−CH 2 + 2 Mn. O 2 + 2 KOH ı ı OH OH Окисление сильным окислителем — перманганатом калия в кислой среде — приводит к полному разрыву двойной связи и об разованию углекислого газа и бензойной кислоты, раствор при этом обесцвечивается. C 6 H 5 −CH═CH 2 + 2 KMn. O 4 + 3 H 2 SO 4 → C 6 H 5 −COOH + CO 2 + K 2 SO 4 + 2 Mn. SO 4 +4 H 2 O

СПИРТЫ Наиболее подходящие окислители для первичных и вторичных спиртов: KMn. O 4 , хромовая смесь. Первичные спирты, кроме метанола, окисляются до альдегидов или карбоновых кислот:

СПИРТЫ Метанол окисляется до СО 2: Этанол под действием Cl 2 окисляется до уксусного альдегида: Вторичные спирты окисляются до кетонов:

СПИРТЫ Двухатомный спирт, этиленгликоль HOCH 2 –CH 2 OH, при нагревании в кислой среде с раствором KMn. O 4 или K 2 Cr 2 O 7 легко окисляется до щавелевой кислоты, а в нейтральной – до оксалата калия. 5 СН 2 (ОН) – СН 2 (ОН) + 8 КMn. O 4 +12 H 2 SO 4 → 5 HOOC – COOH +8 Mn. SO 4 +4 К 2 SO 4 +22 Н 2 О 3 СН 2 (ОН) – СН 2 (ОН) + 8 КMn. O 4 → 3 KOOC – COOK +8 Mn. O 2 +2 КОН +8 Н 2 О

ФЕНОЛЫ Окисляются легко благодаря наличию гидроксогруппы, соединенной с бензольным кольцом Фенол окисляется пероксидом водорода в присутствии катализатора до двухатомного фенола пирокатехина, при окислении хромовой смесью – до пара -бензохинона:

АЛЬДЕГИДЫ И КЕТОНЫ Альдегиды окисляются легко, при этом альдегидная группа окисляется до карбоксильной: 3 CH 3 СHO + 2 KMn. O 4 + 3 H 2 O → 2 CH 3 COOK+ CH 3 COOH+ 2 Mn. O 2 + H 2 O 3 CH 3 CH=O + K 2 Cr 2 O 7 + 4 H 2 SO 4 = 3 CH 3 COOH + Cr 2 (SO 4) 3 + 7 H 2 O Метаналь окисляется до CО 2:

АЛЬДЕГИДЫ И КЕТОНЫ Качественные реакции на альдегиды: окисление гидроксидом меди(II) реакция «серебряного зеркала» Соль, а не кислота!

АЛЬДЕГИДЫ И КЕТОНЫ Кетоны окисляются с трудом, слабые окислители на них не действуют Под действием сильных окислителей происходит разрыв С — С связей по обе стороны карбонильной группы с образованием смеси кислот (или кетонов) с меньшим числом атомов углерода, чем в исходном соединении:

АЛЬДЕГИДЫ И КЕТОНЫ В случае несимметричного строения кетона окисление преимущественно осуществляется со стороны менее гидрированного атома углерода при карбонильной группе (правило Попова – Вагнера) По продуктам окисления кетона можно установить его строение:

МУРАВЬИНАЯ КИСЛОТА Среди предельных одноосновных кислот легко окисляется только муравьиная кислота. Это связано с тем, что в муравьиной кислоте кроме карбоксильной группы можно выделить и альдегидную группу. 5 НСООН + 2 KMn. O 4 + 3 H 2 SO 4 → 2 Mn. SO 4 + K 2 SO 4 + 5 СО 2 + 8 Н 2 О Муравьиная кислота реагирует с аммиачным раствором оксида серебра и гидроксидом меди (II) HCOOH + 2OH → 2 Ag + (NH 4)2 CO 3 + 2 NH 3 + H 2 O HCOOH + 2 Cu(OH) 2 CO 2 + Cu 2 O↓+ 3 H 2 O Кроме того, муравьиная кислота окисляется хлором: НСООН + Сl 2 → СО 2 + 2 HCl

НЕПРЕДЕЛЬНЫЕ КАРБОНОВЫЕ КИСЛОТЫ Легко окисляются водным раствором KMn. O 4 в слабощелочной среде с образованием дигидрооксикислот и их солей: В кислой среде происходит разрыв углеродного скелета по месту двойной связи С=С с образованием смеси кислот:

ЩАВЕЛЕВАЯ КИСЛОТА Легко окисляется под действием KMn. O 4 в кислой среде при нагревании до CО 2 (метод перманганатометрии): При нагревании подвергается декарбоксилированию (реакция диспропорционирования): В присутствии концентрированной H 2 SO 4 при нагревании щавелевая кислота и ее соли (оксалаты) диспропорционируют:

Записываем уравнения реакций: 1) CH 3 CH 2 CH 2 CH 3 2) 3) 4) 5) 16, 32 % (36, 68 %, 23, 82 %)Pt, to X 3 X 2 Pt, to. KMn. O 4 KOH X 4 гептан KOH, to бензол. X 1 Fe, HCl. HNO 3 H 2 SO 4 CH 3 + 4 H 2 CH 3 + 6 KMn. O 4 + 7 KOHCOOK + 6 K 2 Mn. O 4 + 5 H 2 O COOK + KOH+ K 2 CO 3 to NO 2 + H 2 O+ HNO 3 H 2 SO 4 N H 3 C l + 3 F e C l 2 + 2 H 2 ON O 2 + 3 F e + 7 H C l

Как уже говорилось, окисление органического вещества - введение в его состав кислорода и (или) отщепление водорода. Восстановление - обратный процесс (введение водорода и отщепление кислорода). Учитывая состав алканов (СnH2n+2), можно сделать вывод об их неспособности вступать в реакции восстановления, но возможности участвовать в реакциях окисления.

Алканы - соединения с низкими степенями окисления углерода, и в зависимости от условий реакции они могут окисляться с образованием различных соединений.

При обычной температуре алканы не вступают в реакции даже с сильными окислителями (Н2Cr2O7, KMnO4 и т.п.). При внесении в открытое пламя алканы горят. При этом в избытке кислорода происходит их полное окисление до СО2, где углерод имеет высшую степень окисления +4, и воды. Горение углеводородов приводит к разрыву всех связей С-С и С-Н и сопровождается выделением большого количества тепла (экзотермическая реакция).

Общепринято, что механизм окисления алканов включает радикальный цепной процесс, поскольку сам по себе кислород малореакционноспособен, чтобы оторвать атом водорода от алкана нужна частица, которая будет инициировать возникновение алкильного радикала, который будет реагировать с кислородом, давая пероксирадикал. Затем пероксирадикал может оторвать атом водорода от другой молекулы алкана с образованием алкилгидропероксида и радикала.

Возможно окисление алканов кислородом воздуха при 100-150оС в присутствии катализатора - ацетата марганца, данную реакцию применяют в промышленности. Окисление происходит при продувании тока воздуха через расплавленный парафин, содержащий соль марганца.

Т.к. в результате реакции образуется смесь кислот, то их отделяют от непрореагировавшего парафина растворением в водной щелочи, а затем нейтрализуют минеральной кислотой.

Непосредственно в промышленности этот метод применяется для получения уксусной кислоты из н-бутана:

Окисление алкенов

Реакции окисления алкенов подразделяют на две группы: 1) реакции, в которых сохраняется углеродный скелет, 2) реакции окислительной деструкции углеродного скелета молекулы по двойной связи.

Реакции окисления алкенов с сохранением углеродного скелета

1. Эпоксидирование (реакция Прилежаева)

Ациклические и циклические алкены при взаимодействии с перкислотами в неполярной среде образуют эпоксиды (оксираны).

Также оксираны можно получить окислением алкенов гидропероксидами в присутствии молибден-, вольфрам-, ванадийсодержащих катализаторов:

Простейший оксиран - окись этилена - получают в промышленности окислением этилена кислородом в присутствии серебра или оксида серебра как катализатора.

2. анти-Гидроксилирование (гидролиз эпоксидов)

Кислотный (или щелочной) гидролиз эпоксидов приводит к раскрытию оксидного цикла с образованием трансдиолов.


В первой стадии происходит протонирование атома кислорода эпоксида с образованием циклического оксониевого катиона, который раскрывается в результате нуклеофильной атаки молекулы воды.

Раскрытие эпоксидного кольца, катализируемого основанием, также приводит к образованию транс-гликолей.


3. син-Гидроксилирование

Одним из старейших методов окисления алкенов является реакция Вагнера (окисление перманганатом калия). Первоначально при окислении образуется циклический эфир марганцевой кислоты, который гидролизуется до вицинального диола:


Помимо реакции Вагнера существует другой метод син-гидроксилирования алкенов под действием оксида осмия (VIII), который был предложен Криге. При действии тетраоксида осмия на алкен в эфире или диоксане образуется черный осадок циклического эфира осмиевой кислоты - осмат. Однако присоединение OsO4 к кратной связи заметно ускоряется в пиридине. Полученный черный осадок осмата легко разлагают действием водного раствора гидросульфита натрия:


Перманганат калия или оксид осмия (VIII) окисляют алкен до цис-1,2-диола.

Окислительное расщепление алкенов

К окислительному расщеплению алкенов относятся реакции взаимодействия их с перманганатом калия в щелочной или в серной кислоте, а также окисление раствором триоксида хрома в уксусной кислоте или дихроматом калия и серной кислотой. Конечным результатом таких превращений является расщепление углеродного скелета по месту двойной связи и образование карбоновых кислот или кетонов.

Однозамещенные алкены с концевой двойной связью расщепляются до карбоновой кислоты и углекислого газа:


Если оба атома углерода при двойной связи содержат только по одной алкильной группе, то образуется смесь карбоновых кислот:


А вот если тетразамещенный при двойной связи алкен - кетон:


Гораздо большее препаративное значение приорела реакция озонолиза алкенов. В течение многих десятилетий эта реакция служила основным методом определения строения исходного алкена. Данная реакция проводится пропусканием тока раствора озона в кислороде раствор алкена в хлористом метилене или этилацетате при -80 … -100оС. Механизм данной реакции установлен Криге:



Озониды - нестабильные соединения, разлагающиеся со взрывом. Существует два способа разложения озонидов - окислительное и восстановительное.

При гидролизе озониды расщепляются на карбонильные соединения и перекись водорода. Перекись водорода окисляет альдегиды до карбоновых кислот - это есть окислительное разложение:


Гораздо более важное значение имеет восстановительное расщепление озонидов. В качестве продуктов озонолиза оказываются альдегиды или кетоны в зависимости от строения исходного алкена:

Помимо приведенных выше методов существует еще один метод, предложенный в 1955 г. Лемье:

В методе Лемье не возникает трудоемких процедур по отделению диоксида марганца, т.к. диоксид и манганат вновь окисляются перйодатом до перманганат-иона. Это позволяет использовать только каталитические количесвта перманганата калия.

В заданиях категории С3 ЕГЭ особые трудности вызывают реакции окисления органических веществ перманганатом калия KMnO 4 в кислой среде, протекающие с разрывом углеродной цепочки. Например, реакция окисления пропена, протекающая согласно уравнению:

CH 3 CH = CH 2 + KMnO 4 + H 2 SO 4 CH 3 COOH + CO 2 + MnSO 4 + K 2 SO 4 + H 2 O.

Чтобы расставить коэффициенты в сложных уравнениях окислительно-восстановительных реакций, подобных этой, стандартная методика предлагает составить электронный баланс, но после очередной попытки становится очевидно, что этого недостаточно. Корень проблемы здесь кроется в том, что коэффициент перед окислителем, взятый из электронного баланса, необходимо заменить. Данная статья предлагает два способа, которые позволяют выбрать правильный коэффициент перед окислителем, чтобы, наконец, уравнять все элементы. Способ подстановки для замены коэффициента перед окислителем больше подходит тем, кто способен долго и кропотливо считать, поскольку расстановка коэффициентов этим способом может оказаться длительной (в данном примере понадобилось 4 попытки). Способ подстановки применяется совместно с методом "ТАБЛИЦА", который также подробно рассматривается в этой статье. Способ "алгебраический" позволяет не менее просто и надёжно, но гораздо быстрее заменить коэффициент перед окислителем KMnO 4 по сравнению со способом подстановки, однако имеет более узкую область применения. Способ "алгебраический" может быть использован только для замены коэффициента перед окислителем KMnO 4 в уравнениях реакций окисления органических веществ, протекающих с разрывом углеродной цепочки.

Скачать:

Предварительный просмотр:

Чтобы пользоваться предварительным просмотром создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com

По теме: методические разработки, презентации и конспекты

Расстановка коэффициентов в химических уравнениях

Преподаватель, являясь главным действующим лицом в организации познавательной деятельности учащихся, постоянно находится в поиске путей повышения эффективности обучения. Организация эффективного обуче...

4.5. Окисление алкенов

Реакции окисления алкенов целесообразно подразделить на две большие группы: реакции, в которых сохраняется углеродный скелет и реакции окислительной деструкции углеродного скелета молекулы по двойной связи. К первой группе реакций относятся эпоксидирование, а также гидроксилирование, приводящее к образованию вицинальных диолов (гликолей). В случае циклических алкенов при гидроксилировании образуются вицинальные транс - или цис -диолы. Другая группа включает озонолиз и реакции исчерпывающего окисления алкенов, приводящие к образованию различного рода карбонильных соединений и карбоновых кислот.

4.5.а. Реакции окисления алкенов с сохранением углеродного скелета

1. Эпоксидирование (реакция Н.А. Прилежаева, 1909 г)

Ациклические и циклические алкены при взаимодействии с перкислотами (надкислотами) RCOOOH в неполярной, индифферентной среде образуют эпоксиды (оксираны), поэтому сама реакция носит название реакции эпоксидирования.

Согласно современной номенклатуре ИЮПАК - трехчленный цикл с одним атомом кислорода носит название оксиран.

Эпоксидирование алкенов следует рассматривать как синхронный, согласованный процесс, в котором не участвуют ионные интермедиаты типа гидроксильного катиона ОН+ . Другими словами, эпоксидирование алкенов представляет собой процесс син -присоединения одного атома кислорода по двойной связи с полным сохранением конфигурации заместителей при двойной связи.

Для эпоксидирования был предложен механизм, характерный для согласованных процессов.

Т. к. атака двойной связи атомом кислорода надкислоты равновероятна с обеих сторон плоскости двойной связи, образующиеся оксираны представляют собой либо мезо -формы, либо смеси энантиомеров. В качестве эпоксидирующих агентов используются следующие перкислоты: пербензойная, м -хлорпербензойная, моноперфталевая, перуксусная, трифторперуксусная и пермуравьиная. Перкислоты ароматического ряда применяют в виде индивидуальных реагентов, тогда как перкислоты алифатического ряда - СН 3 СО 3 Н, CF 3 CO 3 H и НСО 3 Н не выделяют в индивидуальном виде, а используют после их образования при взаимодействии 30% или 90%-ного пероксида водорода и соответствующей карбоновой кислоты. Пербензойную и м -хлорпербензойную кислоты получают окислением соответственно бензойной и м -хлорбензойной кислот 70%-ной перекисью водорода в растворе метансульфокислоты или из хлорангидридов этих кислот и перекиси водорода.

Моноперфталевую кислоту получают подобным методом из фталевого ангидрида и 30%-ной перекиси водорода.

Первоначально для получения оксиранов (эпоксидов) использовались пербензойная или моноперфталевая кислоты:

В настоящее время для эпоксидирования чаще всего используют м -хлорпербензойную кислоту. В отличие от других перкислот она стабильна при хранении в течение длительного времени (до 1 года) и абсолютно безопасна при обращении. Выходы оксиранов, полученных при окислении ациклических и циклических алкенов м -хлорпербензойной кислотой в растворе хлористого метилена, хлороформа или диоксана, обычно довольно высоки.

Перкислоты часто генерируют прямо в реакционной смеси из 90% перекиси водорода и карбоновой кислоты в хлористом метилене.

Алкены с двойной связью, сопряженной с карбонильной группой или другим акцепторным заместителем, малоактивны и для их окисления лучше использовать более сильные окислители, такие как трифторперуксусная кислота, получаемая из ангидрида трифторуксусной кислоты и 90%-ной перекиси водорода в хлористом метилене. Простейший оксиран - окись этилена получают в промышленности окислением этилена кислородом в присутствии серебра, как катализатора.

2. анти -Гидроксилирование

Трехчленное кольцо оксиранов легко раскрывается под действием самых разнообразных нуклеофильных реагентов. Эти реакции подробно будут обсуждаться в разделе, посвященном ациклическим и циклическим простым эфирам. Здесь же будет рассматриваться только гидролиз оксиранов. Гидролиз оксиранов катализируется как кислотами, так и основаниями. В обоих случаях образуются вицинальные диолы, т. е. гликоли. При кислотном катализе в первой стадии происходит протонирование атома кислорода оксирана с образованием циклического оксониевого катиона, который раскрывается в результате нуклеофильной атаки молекулы воды:

Ключевой стадией в раскрытии кольца, определяющей скорость всего процесса, является нуклеофильная атака водой на протонированную форму оксирана. С точки зрения механизма этот процесс аналогичен раскрытию бромониевого иона при нуклеофильной атаке бромид-иона или другого нуклеофильного агента. С этих позиций стереохимическим результатом должно быть образование транс -гликолей при расщеплении циклических эпоксидов. Действительно, при кислотно-катализируемом гидролизе циклогексеноксида или циклопентеноксида образуются исключительно транс -1,2-диолы.

Таким образом, двухстадийный процесс эпоксидирования алкена с последующим кислотным гидролизом эпоксида суммарно соответствует реакции анти -гидроксилирования алкенов.

Обе стадии анти -гидроксилирования алкенов можно совместить, если алкен обрабатывать водной 30-70%-ной перекисью водорода в муравьиной или трифторуксусной кислоте. Обе эти кислоты являются достаточно сильными для того, чтобы вызвать раскрытие оксиранового цикла.

Раскрытие оксиранового кольца, катализируемое основанием, также приводит к образованию циклических транс -гликолей.

Следовательно, двухстадийный процесс эпоксидирования алкенов с последующим щелочным гидролизом эпоксидов также является реакцией анти -гидроксилирования алкенов.

3. син -Гидроксилирование

Некоторые соли и оксиды переходных металлов в высших степенях окисления являются эффективными реагентами син -гидроксилирования двойной связи алкена, когда обе гидроксильные группы присоединяются с одной и той же стороны двойной связи. Окисление алкенов перманганатом калия - один из старейших методов син -гидроксилирования двойной связи - продолжает широко использоваться, несмотря на свойственные ему ограничения. Цис -1,2-циклогександиол был впервые получен В.В. Марковниковым в 1878 году гидроксилированием циклогексена водным раствором перманганата калия при 0 0 С.

Этот метод в дальнейшем получил развитие в работах русского ученого Е.Е. Вагнера, поэтому син -гидроксилирование алкенов под действием водного раствора перманганата калия носит название реакции Вагнера. Перманганат калия является сильным окислителем, способным не только гидроксилировать двойную связь, но и расщеплять образующийся вицинальный диол. Для того, чтобы по возможности избежать дальнейшего расщепления гликолей, необходимо тщательно контролировать условия реакции. Выходы гликолей при этом обычно невелики (30-60%). Наилучшие результаты достигаются при гидроксилировании алкенов в слабощелочной среде (рН~8 9) при 0-5 0 С разбавленным 1%-ным водным раствором KMnO 4 .

Первоначально при окислении алкенов перманганатом калия образуется циклический эфир марганцевой кислоты, который немедленно гидролизуется до вицинального диола.

Циклический эфир марганцевой кислоты как интермедиат не был выделен, однако его образование следует из экспериментов с меченым 18 О перманганатом калия: оба атома кислорода в гликоле оказываются мечеными при окислении алкена KMn 18 O 4 . Это означает, что оба атома кислорода переходят от окислителя, а не из растворителя - воды, что находится в хорошем соответствии с предлагаемым механизмом.

Другой метод син -гидроксилирования алкенов под действием оксида осмия (VIII) OsO 4 был предложен Р. Криге в 1936 году. Тетраоксид осмия представляет собой бесцветное, летучее, кристаллическое вещество, хорошо растворимое в эфире, диоксане, пиридине и др. органических растворителях. При взаимодействии тетраоксида осмия с алкенами в эфире или диоксане образуется черный осадок циклического эфира осмиевой кислоты - осмат, который легко может быть изолирован в индивидуальном виде. Присоединение OsO 4 к двойной связи заметно ускоряется в растворе в пиридине. Разложение осматов до вицинальных гликолей достигается действием водного раствора гидросульфита натрия или сероводородом.

Выходы продуктов син -гидроксилирования алкенов в этом методе значительно выше, чем при использовании перманганата в качестве окислителя. Важным достоинством метода Криге является отсутствие продуктов окислительного расщепления алкенов, характерного для перманганатного окисления.

Тетраоксид осмия очень дорогой и труднодоступный реагент, к тому же он токсичен. Поэтому оксид осмия (VIII) используется при синтезе малых количеств трудно доступных веществ с целью получения наиболее высокого выхода диола. С целью упрощения син -гидроксилирования алкенов под действием OsO 4 была разработана методика, позволяющая использовать лишь каталитические количества этого реагента. Гидроксилирование алкенов осуществляется с помощью перекиси водорода в присутствии OsO 4 , например:

В заключение этого раздела приведем стереохимические отношения между алкеном цис - или транс -конфигурации и конфигурацией образующегося вицинального диола, который может быть цис - или транс -изомером, эритро - или трео -формой, мезо - или D,L -формой в зависимости от заместителей в алкене:

Аналогичные стереохимические отношения наблюдаются и в других реакциях син - или анти -присоединения по кратной связи водорода, галогенводородов, воды, галогенов, гидридов бора и др. реагентов.

Просмотров