Определение понятию взрыв. Понятие о взрыве и взрывчатых веществах. ДРП, свойства и получение

освобождение большого количестваэнергиивограниченном объеме за короткий промежуток времени. В. приводит к образованию сильно нагретого газа (плазмы) с очень высоким давлением, к-рый при расширении оказывает механическое воздействие (давление, разрушение) на окружающие тела. В твердой среде сопровождается ее разрушением и дроблением. В. осуществляется чаще всего за счет освобождения химической энергии взрывчатых веществ.

Отличное определение

Неполное определение ↓

Взрыв

быстрое преобразование вещества (взрывное горение), сопровождающееся выделением энергии и образованием сжатых газов, способных производить работу. В окружающей среде распространяется взрывная волна. Количество выделившейся при в. Энергии определяет масштаб (объем, площадь) разрушений. Величина концентрации энергии в единице объема определяет интенсивность разрушений в очаге взрыва. Давление взрыва, кпамасштаб повреждения зданий 100полное разрушение зданий 5350%-ное разрушение зданий 28среднее повреждение зданий 12умеренное повреждение зданий (повреждение Внутренних перегородок, рам, дверей и т. П.) 3малое повреждение зданий (разбита часть Остекления) Давление взрыва 5 кпа, характеризующее нетравмоопасное повреждение человека, принято в качестве п о г р а н и ч н о й в е л и ч и н ы при определении категории помещений и зданий, наружных установок. При давлении в. Ниже 5 кпа помещение, здание, наружная установка не относятся к категории а или в по взрывопожароопасности. При диффузионном горении твердых и жидких веществ (материалов) в условиях пожара в. Не реализуется. Однако при накоплении в замкнутом объеме продуктов термической и термоокислительной деструкции (водород, метан, оксид углерода и др.) В. Может произойти. Примером служат в. Силосов и бункеров на элеваторах, комбикормовых заводах. При самонагревании и последующем самовозгорании растительного сырья продукты разложения аккумулируются в выгоревших полостях и при обрушениях сводов воспламеняются со в. П р о е к т и р у е м ы е В. Применяют в военном деле, горном деле, строительстве и др.

Взрыв - весьма быстрый переход потенциальной энергии в механическую работу.

Взрывы: Электрический, Кинетический, Физический(взрыв баллонов) ,Атомный(выделение большого кол-ва тепла за счет цепной реакции), Химический взрыв(за счет помещенной внутрь энергии, которая преврщется в энергию сильносжатых газов за счет хим. реакций)

Энергия - способность тела совершать работу. Работа – Величина, измеряющая количество энергии превращения из одной формы в другую. Мощность – работа, проделанная за единицу времени.

Взрывчатые материалы – представляют собой относительно неустойчивую термодинамическими свойствами систему, способную, под влиянием внешних воздействий, производить протекание изотермических превращений с образованием большого количества разогретых материалов.

Возможность химического взрыва определяется четырьмя условиями:

1) большой скоростью химического превращения;

2) экзотермичностью его;

3) наличием газов или паров в продуктах взрыва;

4) способностью реакции к самораспространению. Скорость химического превращения. Для небольших зарядов.

3. Классификация взрывчатых процессов

классификация взрывчатых процессов: а) Медленное химическое разложение;

б) взрыв (физический или/и химический быстропротекающий процесс с выделением значительной энергии в небольшом объёме за короткий промежуток времени, приводящий к ударным, вибрационным и тепловым воздействиям на окружающую среду и высокоскоростному расширению газов.)

в) детонация (режим горения, в котором по веществу распространяется ударная волна, инициирующая химические реакции горения, в свою очередь, поддерживающие движение ударной волны за счёт выделяющегося в экзотермических реакциях тепла.).

г) горение(сложный физико-химический процесс превращения исходных веществ в продукты сгорания в ходе экзотермических реакций, сопровождающийся интенсивным выделением тепла)

Процесс протекает со скоростью звука в этом веществе- до 1000 м/с, в то время, как взрыв и детонация больше скорости звука

Медленное термическое превращение, горение и детонация - связаны между собою как по сущности происходящих при них процессов, так и генетически. Медленное химическое превращение может в определенных условиях приводить к возникновению горения, горение может переходить в детонацию; возможен также и переход детонации в горение.

4.Классификация вм.

Все взрывчатые вещества, применяемые или применявшиеся в практике, разделяются на три группы:

I группа -метательные BB, или пороха;

II группа - бризантные, или дробящие взрывчатые вещества;

III группа - инициирующие взрывчатые вещества.

I группа. Метательные BB, или пороха. К этой группе относятся вещества, характеризующиеся быстрым горением и пригодные для сообщения пуле или снаряду движения в канале ствола оружия или орудия. Со времени второй мировой войны пороха широко применяются для сообщения движения реактивным снарядам.

Метательные BB, или пороха, делятся на следующие классы:

1-й класс. Механические смеси. К механическим смесям относятся дымный, или черный порох и различные смеси типа черного пороха, например, смеси с натриевой селитрой.

В настоящее время дымный порох не применяется для стрельбы в артиллерии. Он применяется в военном деле для изготовления воспламенителей пороховых зарядов, в качестве вышиб-ного заряда шрапнелей, для запрессовки в дистанционные кольца, для изготовления огнепроводного шнура и других целен. Пороха на натриевой селитре в военном деле не применяются вследствие их физической нестойкости (сильной гигроскопичности). К классу смесей относятся также так называемые селтроугольные добавки, т. е. смеси аммиачной селитры с углем, служившие во время первой мировой войны для частичной замены бездымного пороха в пороховых зарядах. 2-й класс. Коллоидные, или бездымные пороха.

Бездымные

1 Изложенная здесь классификация обнимает лишь практически применяемые взрывчатые вещества. Поэтому в нее не входят такие взрывчатые вещества, как газообразные взрывчатые смеси, сверхчувствительные взрывчатые вещества и т. д.

2 Для большинства порохов этого класса название «бездымные», строго говоря, применяется неправильно: это - малодымные пороха. Вначале это название оправдывалось сравнением коллоидного пороха с черным; при современной технике даже небольшая дымность большинства коллоидных порохов нежелательна, так как демаскирует расположение орудий, и ее стремятся устранить.

В зависимости от природы растворителя коллоидные пороха делятся на две категории:

1. Пироксилиновые пороха, изготовляемые с участием летучего растворителя, в значительной мере удаляемого из пороха б последующих фазах его производства.

2. Пороха на труднолетучем или нелетучем растворителе, полностью остающемся в порохе.

II группа. Бризантные, или дробящие взрывчатые вещества. Для веществ этой группы преимущественным видом взрывчатого превращения является детонация; они применяются для снаряжения разрывных снарядов (предназначенных для разрушения целей или уничтожения осколками живой силы противника) и для подрывных или взрывных работ.

Бризантные BB делятся на следующие классы:

1-й класс. Азотнокислые эфиры углеводов или спиртов и взрывчатые вещества, приготовленные на их основе. (пироксилин, нитроглицерин, нитрогликоль, тетранитропентаэритрит, или тэн)

2-й класс. Нитросоединения. Они представляют собой важнейший класс бризантных BB и применяются для снаряжения артиллерийских снарядов, авиабомб, противотанковых и противопехотных мин, ручных гранат и других боеприпасов.

3-й класс. Взрывчатые смеси. Взрывчатые смеси относятся к так называемым суррогатным взрывчатым веществам. Сюда относятся аммиачноселитренные взрывчатые вещества, хлоратные и перхлоратные взрывчатые вещества (хлоратиты и перхлоратиты), оксиликвиты и другие смеси с жидкими окислителями.

Аммиачноселитренные взрывчатые вещества представляют собой важнейшую категорию класса взрывчатых смесей. (Аммотол, Шнейдерит, Маисит)

Только применение этих взрывчатых веществ позволило разрешить во время двух мировых войн задачу обеспечения армий взрывчатыми веществами в огромных количествах и по пониженной стоимости сравнительно с чистыми нитросоединениями.

III группа . Инициирующие взрывчатые вещества. Инициирующие BB характеризуются тем, что они либо взрываются от простых видов внешнего воздействия - луча пламени, накола, трения, причем способны вызвать взрыв (детонацию) бризантных взрывчатых веществ.

Характерным отличием инициирующих BB, применяемых для детонирования бризантных BB, является короткий период нарастания скорости детонации.

Бризантные взрывчатые вещества иногда называют вторичными в отличие от первичных - инициирующих взрывчатых веществ. Это отличие заключается в том, что вторичные BB в условиях их применения не могут быть надежно взорваны простым внешним воздействием (лучом пламени, наколом, трением и т. п.) -

Важнейшими представителями инициирующих веществ являются следующие:

1) гремучая ртуть и ртутная соль гремучей кислоты;

2) азид свинца PbN0 - свинцовая соль азотистоводородной кислоты HN,.;

3) тринитрорезорцпнат свинца

Прежде всего определим понятие «взрыв». Толко­вый словарь дает следующее определение взрыва: явление, со­провождающееся 1) резким грохотом, 2) быстрой химической или ядерной реакцией с выделением тепла и стремительным расширением газа, а также 3) разрушающим действием за счет повышенного -давления в области взрыва. Более строгое науч­ное определение взрыва приведено в работе :

«Под взрывом в атмосфере подразумевается выделение энергии за такой промежуток времени и в таком объеме, которые достаточно малы для возник­новения волны давления конечной амплитуды, распространяющейся от источ­ника взрыва. Энергия источника может быть ядерной, химической или элек­трической либо энергией давления. Однако выделение этой энергии не являет­ся взрывом, если оно недостаточно локализовано во времени и пространстве и не приводит к образованию воспринимаемой на слух волны давления. Хотя обычно взрывам сопутствуют разрушения, вовсе не обязательно, чтобы они имели место. Однако для взрыва необходимо, чтобы он сопровождался звуковым эффектом».

Это определение относится к взрывам в воздухе. Приводящие к разрушениям взрывы, разумеется, могут происходить и в дру­гих средах - воде и земле. Мы будем рассматривать лишь слу­чайные взрывы в воздушной среде при нормальных условиях, сознательно исключая взрывы подводные или подземные, по­скольку большинство подобных взрывов являются запланиро­ванными и используются в военных и мирных целях, например для проведения взрывных работ.

Существует много причин, приводящих к взрывам в атмо­сфере. Табл. 2.1 содержит перечень источников взрыва, включая природные, преднамеренные и случайные взрывы. Перечень составлен с учетом различных способов энерговыделения и пред­ставляется нам достаточно полным. В табл. 2.1 включен и пере­чень теоретических моделей, описывающих источники и исполь­зуемых для изучения взрывов. Конечно, подобные модели являются определенной идеализацией реальных процессов.

Таблица 2.1. Классификация взрывов 1 I

Теоретические Природ­ Преднамеренные Случайные взрывы
Идеальный точеч- Молнии Ядерные взрывы Взрывы конденсиро-
иый источник ванных BB
в идеальном Взрывы конденси- в непрочной оболоч-
газе рованных BB ке или без нее
в реальном газе Вулканы промышленных BB военных BB в прочной оболочке
Метео- пиротехнических Взрывы при горении в
Автомодельный риты BB замкнутом объеме без
источник (источ- избыточного давления
ник с бесконечно Взрывы топливо- газов и паров
большим энерго­выделением) воздушных облаков пылевзвесей
Ружейные и пу- Взрывы емкостей с га-
шечные взрывы зом под давлением
Сфера с мгновен- у дульного среза при простых авари-
ным энерго вы де- у сброса безот- ях (нереагирующие
лением (взрываю- катного орудия газы)
щаяся сфера) при горении
Сфера с плавным Электрические с последующим го-
искры рением
эне pro выделением при выходе из-под контроля химической
Поршень реакции

при выходе из-под

с постоянной Взрывающиеся про- контроля ядерного
скоростью волочки реактора
ускоряющийся Лазерные искры BLEVE (взрывы емко-
с конечным XO- Взрывы в замкну- стей с перегретой жид-
дом костью)
Волна энерговы- тых объемах, на- при внешнем нагре-
пример исследова- ве
деления тельские взрывы с горением после
при горении газов и пылевзве- аварии
C постоянной сей, а также взры- без горения после
скоростью вы в цилиндрах аварии
двигателей внутрен- при выходе из-под
при детонации него сгорания контроля химической
при ускоряю- реакции
щихся пламенах с горением после аварии
при пламенах, распространяю­щихся к центру источника без горения после аварии

Взрывы неограничен-

Как появилась наша Вселенная? Как она превратилась в кажущееся на первый взгляд бесконечное пространство? И чем она станет спустя многие миллионы и миллиарды лет? Эти вопросы терзали (и продолжают терзать) умы философов и ученых, кажется, еще с начала времен, породив при этом множество интересных и порой даже безумных теорий. Сегодня большинство астрономов и космологов пришли к общему согласию относительно того, что Вселенная, которую мы знаем, появилась в результате гигантского взрыва, породившего не только основную часть материи, но явившегося источником основных физических законов, согласно которым существует тот космос, который нас окружает. Все это называется теорией Большого взрыва.

Основы теории Большого взрыва относительно просты. Если кратко, согласно ей вся существовавшая и существующая сейчас во Вселенной материя появилась в одно и то же время — около 13,8 миллиарда лет назад. В тот момент времени вся материя существовала в виде очень компактного абстрактного шара (или точки) с бесконечной плотностью и температурой. Это состояние носило название сингулярности. Неожиданно сингулярность начала расширяться и породила ту Вселенную, которую мы знаем.

Стоит отметить, что теория Большого Взрывая является лишь одной из многих предложенных гипотез возникновения Вселенной (например, есть еще теория стационарной Вселенной), однако она получила самое широкое признание и популярность. Она не только объясняет источник всей известной материи, законов физики и большую структуру Вселенной, она также описывает причины расширения Вселенной и многие другие аспекты и феномены.

Хронология событий в теории Большого Взрыва

Основываясь на знаниях о нынешнем состоянии Вселенной, ученые предполагают, что все должно было начаться с единственной точки с бесконечной плотностью и конечным временем, которые начали расширяться. После первоначального расширения, как гласит теория, Вселенная прошла фазу охлаждения, которая позволила появиться субатомным частицам и позже простым атомам. Гигантские облака этих древних элементов позже, благодаря гравитации, начали образовывать звезды и галактики.

Все это, по догадкам ученых, началось около 13,8 миллиарда лет назад, и поэтому эта отправная точка считается возрастом Вселенной. Путем исследования различных теоретических принципов, проведения экспериментов с привлечением ускорителей частиц и высокоэнергетических состояний, а также путем проведения астрономических исследований дальних уголков Вселенной ученые вывели и предложили хронологию событий, которые начались с Большого взрыва и привели Вселенную в конечном итоге к тому состоянию космической эволюции, которое имеет место быть сейчас.

Ученые считают, что самые ранние периоды зарождения Вселенной — продлившиеся от 10 -43 до 10 -11 секунды после Большого взрыва, — по прежнему являются предметом споров и обсуждений. Если учесть, что те законы физики, которые нам сейчас известны, не могли существовать в это время, то очень сложно понять, каким же образом регулировались процессы в этой ранней Вселенной. Кроме того, экспериментов с использованием тех возможных видов энергий, которые могли присутствовать в то время, до сих пор не проводилось. Как бы там ни было, многие теории о возникновении Вселенной в конечном итоге согласны с тем, что в какой-то период времени имелась отправная точка, с которой все началось.

Эпоха сингулярности

Также известная как планковская эпоха (или планковская эра) принимается за самый ранний из известных периодов эволюции Вселенной. В это время вся материя содержалась в единственной точке бесконечной плотности и температуры. Во время этого периода, как считают ученые, квантовые эффекты гравитационного взаимодействия доминировали над физическим, и ни одна из физических сил не была равна по силе гравитации.

Планковская эра предположительно длилась от 0 до 10 -43 секунды и названа она так потому, что измерить ее продолжительность можно только планковским временем . Ввиду экстремальных температур и бесконечной плотности материи состояние Вселенной в этот период времени было крайне нестабильным. После этого произошли периоды расширения и охлаждения, которые привели к возникновению фундаментальных сил физики.

Приблизительно в период с 10 -43 до 10 -36 секунды во Вселенной происходил процесс столкновения состояний переходных температур. Считается, что именно в этот момент фундаментальные силы, которые управляют нынешней Вселенной, начали отделяться друг от друга. Первым шагом этого отделения явилось появление гравитационных сил, сильных и слабых ядерных взаимодействий и электромагнетизма.

В период примерно с 10 -36 до 10 -32 секунды после Большого взрыва температура Вселенной стала достаточно низкой (1028 К), что привело к разделению электромагнитных сил (сильное взаимодействие) и слабого ядерного взаимодействия (слабого взаимодействия).

Эпоха инфляции

С появлением первых фундаментальных сил во Вселенной началась эпоха инфляции, которая продлилась с 10 -32 секунды по планковскому времени до неизвестной точки во времени. Большинство космологических моделей предполагают, что Вселенная в этот период была равномерно заполнена энергией высокой плотности, а невероятно высокие температура и давление привели к ее быстрому расширению и охлаждению.

Это началось на 10 -37 секунде, когда за фазой перехода, вызвавшей отделение сил, последовало расширение Вселенной в геометрической прогрессии. В этот же период времени Вселенная находилась в состоянии бариогенезиса, когда температура была настолько высокой, что беспорядочное движение частиц в пространстве происходило с околосветовой скоростью.

В это время образуются и сразу же сталкиваясь разрушаются пары из частиц — античастиц, что, как считается, привело к доминированию материи над антиматерией в современной Вселенной. После прекращения инфляции Вселенная состояла из кварк-глюоновой плазмы и других элементарных частиц. С этого момента Вселенная стала остывать, начала образовываться и соединяться материя.

Эпоха охлаждения

Со снижением плотности и температуры внутри Вселенной начало происходить и снижение энергии в каждой частице. Это переходное состояние длилось до тех пор, пока фундаментальные силы и элементарные частицы не пришли к своей нынешней форме. Так как энергия частиц опустилась до значений, которые можно сегодня достичь в рамках экспериментов, действительное возможное наличие этого временного периода вызывает у ученых куда меньше споров.

Например, ученые считают, что на 10 -11 секунде после Большого взрыва энергия частиц значительно уменьшилась. Примерно на 10 -6 секунде кварки и глюоны начали образовывать барионы — протоны и нейтроны. Кварки стали преобладать над антикварками, что в свою очередь привело к преобладанию барионов над антибарионами.

Так как температура была уже недостаточно высокой для создания новых протонно-антипротонных пар (или нейтронно-антинейтронных пар), последовало массовое разрушение этих частиц, что привело к остатку только 1/1010 количества изначальных протонов и нейтронов и полному исчезновению их античастиц. Аналогичный процесс произошел спустя около 1 секунды после Большого взрыва. Только «жертвами» на этот раз стали электроны и позитроны. После массового уничтожения оставшиеся протоны, нейтроны и электроны прекратили свое беспорядочное движение, а энергетическая плотность Вселенной была заполнена фотонами и в меньшей степени нейтрино.

В течение первых минут расширения Вселенной начался период нуклеосинтеза (синтез химических элементов). Благодаря падению температуры до 1 миллиарда кельвинов и снижения плотности энергии примерно до значений, эквивалентных плотности воздуха, нейтроны и протоны начали смешиваться и образовывать первый стабильный изотоп водорода (дейтерий), а также атомы гелия. Тем не менее большинство протонов во Вселенной остались в качестве несвязных ядер атомов водорода.

Спустя около 379 000 лет электроны объединились с этими ядрами водорода и образовали атомы (опять же преимущественно водорода), в то время как радиация отделилась от материи и продолжила практически беспрепятственно расширяться через пространство. Эту радиацию принято называть реликтовым излучением, и она является самым древнейшим источником света во Вселенной.

С расширением реликтовое излучение постепенно теряло свою плотность и энергию и в настоящий момент его температура составляет 2,7260 ± 0,0013 К (-270,424 °C), а энергетическая плотность 0,25 эВ (или 4,005×10 -14 Дж/м³; 400–500 фотонов/см³). Реликтовое излучение простирается во всех направлениях и на расстояние около 13,8 миллиарда световых лет, однако оценка его фактического распространения говорит примерно о 46 миллиардах световых годах от центра Вселенной.

Эпоха структуры (иерархическая эпоха)

В последующие несколько миллиардов лет более плотные регионы почти равномерно распределенной во Вселенной материи начали притягиваться друг к другу. В результате этого они стали еще плотнее, начали образовывать облака газа, звезды, галактики и другие астрономические структуры, за которыми мы можем наблюдать в настоящее время. Этот период носит название иерархической эпохи. В это время та Вселенная, которую мы видим сейчас, начала приобретать свою форму. Материя начала объединяться в структуры различных размеров — звезды, планеты, галактики, галактические скопления, а также галактические сверхскопления, разделенные межгалактическими перемычками, содержащими всего лишь несколько галактик.

Детали этого процесса могут быть описаны согласно представлению о количестве и типе материи, распределенной во Вселенной, которая представлена в виде холодной, теплой, горячей темной материи и барионного вещества. Однако современной стандартной космологической моделью Большого взрыва является модель Лямбда-CDM, согласно которой частицы темной материи двигаются медленнее скорости света. Выбрана она была потому, что решает все противоречия, которые появлялись в других космологических моделях.

Согласно этой модели на холодную темную материю приходится около 23 процентов всей материи/энергии во Вселенной. Доля барионного вещества составляет около 4,6 процента. Лямбда-CDM ссылается на так называемую космологическую постоянную: теорию, предложенную Альбертом Эйнштейном, которая характеризует свойства вакуума и показывает соотношение баланса между массой и энергией как постоянную статичную величину. В этом случае она связана с темной энергией, которая служит в качестве акселератора расширения Вселенной и поддерживает гигантские космологические структуры в значительной степени однородными.

Долгосрочные прогнозы относительно будущего Вселенной

Гипотезы относительно того, что эволюция Вселенной обладает отправной точкой, естественным способом подводят ученых к вопросам о возможной конечной точке этого процесса. Если Вселенная начала свою историю из маленькой точки с бесконечной плотностью, которая вдруг начала расширяться, не означает ли это, что расширяться она тоже будет бесконечно? Или же однажды у нее закончится экспансивная сила и начнется обратный процесс сжатия, конечным итогом которого станет все та же бесконечно плотная точка?

Ответы на эти вопросы были основной целью космологов с самого начала споров о том, какая же космологическая модель Вселенной является верной. С принятием теории Большого взрыва, но по большей части благодаря наблюдению за темной энергией в 1990-х годах, ученые пришли к согласию в отношении двух наиболее вероятных сценариев эволюции Вселенной.

Согласно первому, получившему название «большое сжатие», Вселенная достигнет своего максимального размера и начнет разрушаться. Такой вариант развития событий будет возможен, если только плотность массы Вселенной станет больше, чем сама критическая плотность. Другими словами, если плотность материи достигнет определенного значения или станет выше этого значения (1-3×10 -26 кг материи на м³), Вселенная начнет сжиматься.

Большой взрыв — в таком виде

Альтернативой служит другой сценарий, который гласит, что если плотность во Вселенной будет равна или ниже значения критической плотности, то ее расширение замедлится, однако никогда не остановится полностью. Согласно этой гипотезе, получившей название «тепловая смерть Вселенной», расширение продолжится до тех пор, пока звездообразования не перестанут потреблять межзвездный газ внутри каждой из окружающих галактик. То есть полностью прекратится передача энергии и материи от одного объекта к другому. Все существующие звезды в этом случае выгорят и превратятся в белых карликов, нейтронные звезды и черные дыры.

Постепенно черные дыры будут сталкиваться с другими черными дырами, что привет к образованию все более и более крупных. Средняя температура Вселенной приблизится к абсолютному нулю. Черные дыры в итоге «испарятся», выпустив свое последнее излучение Хокинга . В конце концов термодинамическая энтропия во Вселенной станет максимальной. Наступит тепловая смерть.

Современные наблюдения, которые учитывают наличие темной энергии и ее влияние на расширение космоса, натолкнули ученых на вывод, согласно которому со временем все больше и больше пространства Вселенной будет проходить за пределами нашего горизонта событий и станет невидимым для нас. Конечный и логичный результат этого ученым пока не известен, однако «тепловая смерть» вполне может оказаться конечной точкой подобных событий.

Есть и другие гипотезы относительно распределения темной энергии, а точнее, ее возможных видов (например фантомной энергии). Согласно им галактические скопления, звезды, планеты, атомы, ядра атомов и материя сама по себе будут разорваны на части в результате ее бесконечного расширения. Такой сценарий эволюции носит название «большого разрыва». Причиной гибели Вселенной согласно этому сценарию является само расширение.

История теории Большого взрыва

Самое раннее упоминание Большого взрыва относится к началу 20-го века и связано с наблюдениями за космосом. В 1912 году американский астроном Весто Слайфер провел серию наблюдений за спиральными галактиками (которые изначально представлялись туманностями) и измерил их доплеровское красное смещение. Почти во всех случаях наблюдения показали, что спиральные галактики отдаляются от нашего Млечного Пути.

В 1922 году выдающийся российский математик и космолог Александр Фридман вывел из уравнений Эйнштейна для общей теории относительности так называемые уравнения Фридмана. Несмотря продвижения Эйнштейном теории в пользу наличия космологической постоянной, работа Фридмана показала, что Вселенная скорее находится в состоянии расширения.

В 1924 году измерения Эдвина Хаббла дистанции до ближайшей спиральной туманности показали, что эти системы на самом деле являются действительно другими галактиками. В то же время Хаббл приступил к разработке ряда показателей для вычета расстояния, используя 2,5-метровый телескоп Хукера в обсерватории Маунт Вилсон. К 1929 году Хаббл обнаружил взаимосвязь между расстоянием и скоростью удаления галактик, что впоследствии стало законом Хаббла.

В 1927 году бельгийский математик, физик и католический священник Жорж Леметр независимо пришел к тем же результатам, какие показывали уравнения Фридмана, и первым сформулировал зависимость между расстоянием и скоростью галактик, предложив первую оценку коэффициента этой зависимости. Леметр считал, что в какой-то период времени в прошлом вся масса Вселенной была сосредоточена в одной точке (атоме).

Эти открытия и предположения вызывали много споров между физиками в 20-х и 30-х годах, большинство из которых считало, что Вселенная находится в стационарном состоянии. Согласно устоявшейся в то время модели, новая материя создается наряду с бесконечным расширением Вселенной, равномерно и равнозначно по плотности распределяясь на всей ее протяженности. Среди ученых, поддерживающих ее, идея Большого взрыва казалась больше теологической, нежели научной. В адрес Леметра звучала критика о предвзятости на основе религиозных предубеждений.

Следует отметить, что в то же время существовали и другие теории. Например, модель Вселенной Милна и циклическая модель. Обе основывались на постулатах общей теории относительности Эйнштейна и впоследствии получили поддержку самого ученого. Согласно этим моделям Вселенная существует в бесконечном потоке повторяющихся циклов расширений и коллапсов.

После Второй мировой войны между сторонниками стационарной модели Вселенной (которая фактически была описана астрономом и физиком Фредом Хойлом) и сторонниками теории Большого взрыва, быстро набиравшей популярность среди научного сообщества, разгорелись жаркие дебаты. По иронии судьбы, именно Хойл вывел фразу « », впоследствии ставшую названием новой теории. Произошло это в марте 1949 года на британском радио BBC.

В конце концов дальнейшие научные исследования и наблюдения все больше и больше говорили в пользу теории Большого взрыва и все чаще ставили под сомнение модель стационарной Вселенной. Обнаружение и подтверждение реликтового излучения в 1965 году окончательно укрепили Большой взрыв в качестве лучшей теории происхождения и эволюции Вселенной. С конца 60-х годов и вплоть до 1990-х астрономы и космологи провели еще больше исследований вопроса Большого взрыва и нашли решения для многих теоретических проблем, стоящих на пути у данной теории.

Среди этих решений, например, работа Стивена Хокинга и других физиков, которые доказали, что сингулярность являлась неоспоримым начальным состоянием общей относительности и космологической модели Большого взрыва. В 1981 году физик Алан Гут вывел теорию, описывающую период быстрого космического расширения (эпохи инфляции), которая решила множество ранее нерешенных теоретических вопросов и проблем.

В 1990-х наблюдался повышенный интерес к темной энергии, которую рассматривали как ключ к решению многих нерешенных вопросов космологии. Помимо желания найти ответ на вопрос о том, почему Вселенная теряет свою массу наряду с темной матерей (гипотеза была предложена еще в 1932 году Яном Оортом), также было необходимо найти объяснение тому, почему Вселенная по-прежнему ускоряется.

Дальнейший прогресс изучения обязан созданию более продвинутых телескопов, спутников и компьютерных моделей, которые позволили астрономам и космологам заглянуть дальше во Вселенной и лучше понять ее истинный возраст. Развитие космических телескопов и появление таких, как, например, Cosmic Background Explorer (или COBE), космический телескоп Хаббла, Wilkinson Microwave Anisotropy Probe (WMAP) и космическая обсерватория Планка, тоже внесло бесценный вклад в исследование вопроса.

Сегодня космологи могут с довольно высокой точностью проводить измерения различных параметров и характеристик модели теории Большого взрыва, не говоря уже о более точных вычислениях возраста окружающего нас космоса. А ведь все началось с обычного наблюдения за массивными космическими объектами, расположенными во многих световых годах от нас и медленно продолжающих от нас отдаляться. И несмотря на то, что мы понятия не имеем, чем это все закончится, чтобы выяснить это, по космологическим меркам на это потребуется не так уж и много времени.

Понятие о взрыве и взрывчатых веществах

Взрывчатыми веществами (ВВ) называются вещества, способные под влиянием внешнего воздействия к чрезвычайно быстрому химическому превращению с выделением тепла и образованием сильно нагретых газов. Процесс такого химического превращения взрывчатого вещества называется взрывом.

Для взрыва характерны три основных фактора, которые определяют действие, производимое взрывом:

Очень большая скорость превращения взрывчатого вещества, измеряемая промежутком времени от сотых до миллионных долей секунды;

Высокая температура, достигающая 3–4,5 тыс. градусов;

Образование большого количества газообразных продуктов, которые, сильно нагреваясь и быстро расширяясь, превращают выделяющуюся при взрыве тепловую энергию в механическую работу, производя разрушения или разбрасывание окружающих заряд предметов.

Совокупностью указанных факторов и объясняется огромная, по сравнению с другими источниками энергии, кроме атомной, мощность взрывчатых веществ. При отсутствии хотя бы одного из перечисленных факторов взрыва не будет.

Для возбуждения взрыва необходимо воздействовать на взрывчатое вещество извне, сообщить ему некоторую порцию энергии, величина которой зависит от свойств взрывчатого вещества. Взрыв могут вызвать различные виды внешнего воздействия: механический удар, накол, трение, нагревание (пламенем, накаленным телом, искрой), электрическое накаливание или искровой разряд, химическая реакция и, наконец, взрыв другого взрывчатого вещества (капсюлем-детонатором, детонацией на расстоянии).

Основные формы взрывчатого превращения.

Взрывчатое превращение веществ характеризуется тремя показателями: экзотермичностью процесса (выделением тепла); скоростью распространения процесса (кратковременность) и образованием газообразных продуктов.

Экзотермичность процесса взрыва является первым необходимым условием, без которого невозможно возникновение и проявление взрыва. За счет тепловой энергии реакции происходит разогрев газообразных продуктов до температуры в несколько тысяч градусов, их сильное сжатие в объеме взрывчатого вещества и последующее активное расширение.

Образование большого количества газообразных и парообразных продуктов реакции обеспечивает создание в локальном объеме высокого давления и обусловленного им разрушительного эффекта. Вследствие нагревания до высокой температуры (3500 – 4000К) продукты взрыва оказываются в чрезвычайно сжатом состоянии (давление при взрыве достигает (20…40)*103 МПа) и способны разрушить очень прочные преграды. В процессе расширения продуктов взрыва осуществляется быстрый переход потенциальной химической энергии ВВ в механическую работу или в кинетическую энергию движущихся частиц



Быстрым сгоранием взрывчатого вещества обычно называют процесс, скорость распространения которого по массе ВВ не превышает нескольких метров в секунду, а иногда - даже долей метра в секунду. Характер действия в этом случае - более или менее быстрое нарастание давления газов и производство ими работы разбрасывания или метания окружающих тел. Если процесс быстрого сгорания происходит на открытом воздухе, то он не сопровождается сколько-нибудь значительным эффектом

Классификация ВВ.

Все ВВ, применяемые при производстве подрывных работ и снаряжении различных боеприпасов делятся на три основные группы:

· инициирующие;

· бризантные;

· метательные (пороха).

ИНИЦИИРУЮЩИЕ - особо восприимчивые к внешним воздействиям (удару, трению, воздействию огня). К ним относятся:

· гремучая ртуть (фульминат ртути);

· азид свинца (азотистоводороднокислый свинец);

· тенерес (тринитрорезорцинат свинца, ТНРС);

БРИЗАНТНЫЕ (дробящие) - способные к устойчивой детонации. Они более мощны и менее чувствительны к внешним воздействиям и в свою очередь подразделяются на:

ВВ ПОВЫШЕННОЙ МОЩНОСТИ , к которым относятся:

· тэн (тетранитропентраэритрит, пентрит);

· гексоген (триметилентринитроамин);

· тетрил (тринитрофенилметилнитроамин).

ВВ НОРМАЛЬНОЙ МОЩНОСТИ :

· тротил (тринитротолуол, тол, ТНТ);

· пикриновая кислота (тринитрофенол, мелинит);

· ПВВ-4 (пластит-4);

ВВ ПОНИЖЕННОЙ МОЩНОСТИ (амиачноселитренные ВВ):

· аммониты;

· динамоны;

· аммоналы.

МЕТАТЕЛЬНЫЕ (пороха) - ВВ, основной формой взрывчатого превращения которых является горение. К ним относятся: - дымный порох; - бездымные пороха.



Пиротехнический состав - это смесь компонентов, обладающая способностью к самостоятельному горению или горению с участием окружающей среды, генерирующая в процессе горения газообразные и конденсированные продукты, тепловую, световую и механическую энергию и создающая различные оптические, электрические, барические и иные специальные эффекты

Классификация ПС. Требования к ПС.

КЛАССИФИКАЦИЯ

Пиротехническими составами снаряжают следующие виды средств военного назначения:

1) осветительные средства (авиабомбы, артиллерийские снаряды, авиационные факелы и др.), используемые для освещения местности в ночных условиях;

2) фотоосветительные средства (фотобомбы, фотопатроны), используемые при ночной аэрофотосъемке: и для других целей;

3) трассирующие средства, делающие видимой траекторию полета пуль и снарядов (и других подвижных объектов) и тем самым облегчающие пристрелку по быстро движущимся целям;

4) средства инфракрасного излучения, используемые для слежения за полетом ракет и в качестве ложных целей;

5) ночные сигнальные средства (патроны и др.), применяемые для подачи сигналов;

6) дневные сигнальные средства (патроны и др.), используемые для той же цели, но в дневных условиях;

7) зажигательные средства (бомбы, снаряды, пули и многие Др.), служащие для уничтожения военных объектов противника;

8) маскирующие средства (дымовые шашки, снаряды и др.), употребляемые для получения дымовых завес;

9) ракеты различного назначения и дальности полета, использующие твердое пиротехническое топливо;

10) учебно-имитационные средства, употребляемые как на маневрах и ученьях, так и в боевой обстановке. Они имитируют действие атомных бомб, фугасных снарядов и бомб, а также различные явления на поле боя: орудийные выстрелы, пожары и др., и могут этим дезориентировать службу наблюдения противника;

11) целеуказательные средства (снаряды, бомбы и др.), указывающие местонахождение объектов противника;

12) пиротехнические газогенераторы, используемые для различных целей. Пиротехнические составы используются также и в различных областях народного хозяйства

К пиротехническим составам военного назначения можно отнести следующие:

1) осветительные;

2) фотоосветительные (фотосмеси);

3) трассирующие;

4) инфракрасного излучения;

5) зажигательные;

6) ночных сигнальных огней;

7) цветных сигнальных дымов;

8) маскирующих дымов;

9) твердое пиротехническое топливо;

10) безпазовые (для замедлителей);

11) газогенерирующие;

12) воспламенительные, содержащиеся в небольшом количестве во всех пиротехнических средствах;

13) прочие: имитационные, свистящие и др. Многие составы применяются в самых различных видах средств; так, например, осветительные составы часто используют в трассирующих средствах; составы маскирующих дымов могут быть использованы и в учебно-имитационных средствах и т. д.

Пиротехнические составы можно также классифицировать по характеру процессов, протекающих три их горении.

Пламенные составы

1. Белопламенные.

2. Цветнолламенные.

3. Составы инфракрасного излучения.

Тепловые составы

1. Термитно-зажигательные.

2. Безгазовые (малогазовые).

Дымовые составы

1. Белого и черного дыма.

2. Цветного дыма.

Вещества и смеси, сгорающие за счет кислорода воздуха

1. Металлы и сплавы металлов.

2. Фосфор, его растворы и сплавы.

3. Смеси нефтепродуктов.

4. Различные вещества и смеси, загорающиеся при соприкосновении с водой или воздухом.

ТРЕБОВАНИЯ, ПРЕДЪЯВЛЯЕМЫЕ К ПИРОТЕХНИЧЕСКИМ СРЕДСТВАМ И СОСТАВАМ

Основное требование - это получение при действии пиротехнического средства максимального специального эффекта. Для различных средств специальный эффект обуславливается различными факторами. Этот вопрос подробно разбирается при описании свойств отдельных категорий составов и средств. Здесь же приводится только несколько примеров.

Для трассирующих средств, специальный эффект определяется хорошей видимостью полета пули или снаряда. Видимость, в свою очередь, определяется силой света пламени и зависит также от цвета пламени.

Для зажигательных средств хороший специальный эффект обуславливается (при наличии подходящей конструкции боеприпасов) созданием достаточно большого очага пожара, высокой температурой пламени, достаточным временем горения состава, а также количеством и свойствами шлаков, получающихся при горении.

Для маскирующих дымовых средств, специальный эффект определяется созданием возможно большей, густой и устойчивой дымовой завесы.

Пиротехнические средства не должны представлять опасности при обращении с ними и хранении. Получаемый при их действии эффект не должен ухудшаться после длительного хранения.

Материалы, используемые для изготовления пиротехнических средств, должны быть по возможности недефицитны. Технологический процесс изготовления должен быть простым, безопасным и допускающим механизацию и автоматизацию производства.

Пиротехнические составы должны обладать следующими качествами: 6

1) давать максимальный специальный эффект при минимальном расходовании состава;

2) иметь по возможности большую плотность (и в порошкообразном, и в прессованном виде);

3) сгорать равномерно с определенной скоростью;

4) обладать химической и физической стойкостью при длительном хранении;

5) иметь возможно меньшую чувствительность к механическим импульсам;

6) не быть чрезмерно чувствительными к тепловым воздействиям (не воспламеняться при небольшом подъеме температуры, при попадании искры и т. п.);

7) иметь минимальные взрывчатые свойства; редкие случаи, когда наличие взрывчатых свойств необходимо, будут оговорены ниже;

8) иметь несложный технологический процесс изготовления;

ИВВ. Общая характеристика

Инициирующие ВВ - это такие взрывчатые вещества, которые характеризуются чрезвычайно высокой чувствительностью к простым видам начального импульса и способностью детонировать в весьма малых количествах.

Когда скорость детонации ИВВ достигает максимального значения, скорость детонации БВВ значительно меньше скорости детонации ИВВ. Позднее, когда скорость детонации БВВ достигает максимальной величины, соотношение энергии изменяется в пользу БВВ, так как скорость детонации БВВ выше, чем у ИВВ. Ускорение взрывчатого превращения зависит от природы ИВВ, величины начального импульса, плотности заряда и плотности его оболочки.

Поэтому ИВВ применяются для инициирования (возбуждения) процессов взрыва разрывных зарядов или горения метательных и ракетных зарядов. В соответствии с этим назначением ИВВ часто называют первичными.

Все ИВВ делятся на индивидуальные и смесевые инициирующие смеси. Индивидуальные ИВВ представлены различными классами неорганических соединений. Из всего многообразия классов лишь немногие получили широкое применение в качестве ИВВ. К ним относятся фульминаты (соли гремучей кислоты), азиды (соли азотистоводородной кислоты), стифнаты или тринитрорезорцинаты (соли стифниновой кислоты или тринитрорезорцина), производственные тетразена.

Получение

Гремучую ртуть получают взаимодействием нитрата ртути с этанолом в разбавленной азотной кислоте. Реакция протекает по схеме:

Свойства

Белый или серый кристаллический порошок, нерастворим в воде. Имеет сладкий металлический вкус, ядовит. Насыпная плотность 1,22-1,25 г/см³. Теплота разложения 1,8 МДж/кг. Температура вспышки - 180 °C. Нижний предел чувствительности при падении груза 700 г - 5,5 см, верхний - 8,5 см. Гравиметрическая плотность 4,39 г/см³. Легко взрывается при ударе, действии пламени, раскалённого тела и т. п. При осторожном нагревании гремучая ртуть медленно разлагается. При 130-150 °C самовоспламеняется со взрывом. Влажная гремучая ртуть гораздо менее взрывоопасна. Влажность гремучей ртути, запрессованной в капсюль-детонатор, должна быть не более 0,03 %. Гремучая ртуть хорошо растворима в водных растворах аммиака или цианистого калия. Концентрированная серная кислота вызывает взрыв одной каплей. Температура взрыва гремучей ртути равна 4810 °C, объём газов 315 л/кг, скорость детонации 5400 м/сек.

Гремучую ртуть получают при действии азотнокислой ртути и азотной кислоты на этиловый спирт. Применяют в капсюлях-детонаторах и капсюлях-воспламенителях. В последнее время гремучая ртуть вытесняется более эффективными инициирующими взрывчатыми веществами - азидом свинца и др.

Свойства азид свинца

· Теплота взрыва: около 1,536 МДж/кг (7,572 МДж/дм³).

· Объем газов: 308 л/кг (1518 л/дм³)

· Скорость детонации: около 4800 м/сек.

Получение

Синтез азида свинца осуществляется в ходе обменной реакции между растворами солей свинца и растворимыми азидами щелочных металлов. Азид свинца в результате выпадает в виде белого кристаллического осадка:

Получение

Получают нейтрализацией горячего водного раствора стифниновой кислоты гидрокарбонатом натрия и последующим взаимодействием образовавшегося стифната натрия с соответствующими растворимыми солями свинца (напр. ацетатом, нитратом или хлоридом) при температуре около 70 °C.

· С 6 H(OH) 2 (NO 2) 3 + NaHCO 3 → C 6 H(NO 2) 3 (ONa) 2 + CO 2 + H 2 O

· C 6 H(NO 2) 3 (ONa) 2 + PbCl 2 → C 6 H(NO 2) 3 (O) 2 Pb + NaCl

· Тетразе́н - химическое соединение C 2 H 6 N 10 ·H 2 O. Моногидрат 5-(4-амидино-1-тетразено)тетразола .

· Желтоватые клиновидные кристаллы. В насыпном виде представляет собой рыхлую кристаллическую массу с насыпной плотностью 0,45 г/см³. Почти не растворим в воде (0,02 г на 100 г воды при 22 °C) и в органических растворителях. Обладает сильными взрывчатыми свойствами.

· Инициирующее взрывчатое вещество, используемое в капсюлях накольного действия как сенсибилизатор (увеличитель чувствительности) к азиду свинца или тринитрорезорцинату свинца.

Свойства

· Плотность кристаллов 1,685 г/см³

· Теплота взрыва 2305 кДж/кг

· Температура вспышки 140 °C

· Объем газообразных продуктов взрыва 400-450 л/кг

Получение

Получают тетразен взаимодействием водных растворов нитрата или карбоната аминогуанидина NH 2 NHC(=NH)NH 2 с нитритом натрия NaNO 2 .

БВВ. Классификация

Бризантные ВВ менее чувствительны к внешним воздействиям, но обладают большей мощностью, чем инициирующие ВВ. Они служат для получения разрушительного действия взрыва. Бризантные ВВ применяются в чистом виде, а также в виде смесей друг с другом для производства подрывных работ, снаряжения авиационных, артиллерийских и инженерных боеприпасов.

Бризантные ВВ подразделяются на:

· ВВ повышенной мощности (гексоген, ТЭН, сплавы тротила с гексогеном, октоген, тетрил);

· ВВ нормальной мощности (тротил, сплавы тротила с ксилитом, динамиты, пироксилин, пластические и эластичные ВВ);

· ВВ пониженной мощности (аммиачная селитра, смеси аммиачной селитры с горючими или взрывчатыми веществами).

Для сравнительной оценки взрывчатых свойств различных ВВ может быть использован тротиловый эквивалент, численно равный отношению теплоты взрывчатого превращения сравниваемого ВВ с аналогичной характеристикой тротила. Наиболее мощным ВВявляется октоген, тротиловый эквивалент которого равен 1,8.

Физические свойства

· Плотность: 1773 кг/м³

· Температура плавления 140 °C, с разложением

· Температура вспышки 215 °C,

· Растворим в ацетоне, нерастворим в воде.

Взрывчатые свойства

· Более чувствителен к удару, чем гексоген,

· Скорость детонации 8350 м/сек.

· Теплота разложения 5756 кДж/кг

· Бризантность

· по Гессу 24 мм

· по Касту 3,5 мм

· Фугасность 500 мл

· (Удельный) объём газообразных продуктов взрыва 790 л/кг

· Критический диаметр 1,5 мм

· тэн относительно стоек в химическом отношении

· Стабильность при хранении выше, чем у гексогена

· При температуре 215 °C взрывается.

· Тротиловый эквивалент (RE) - 1.66

Все величины сильно зависят от условий эксперимента: плотности заряда, материала оболочки, дисперсности взрывчатого вещества, наличия флегматизаторов и т. п.

Получение

Получают путём взаимодействия четырёхатомного спирта пентаэритрита с концентрированными азотной и серной кислотами.

ТЕТРИЛ.

ТРОТИЛ

Физические свойства

· Плотность: от 1500 кг/м³ до 1663 кг/м³

· Температура плавления 80,85 °C

· Температура кипения 295 °C

· Температура вспышки 290 °C

· Теплота взрыва - от 4103 кДж/кг до 4605 кДж/кг (в среднем 4184 кДж/кг)

· Скорость детонации при плотности 1,64 - 6950 м/с

· Бризантность по Гессу - 16 мм

· Бризантность по Касту - 3,9 мм

· Фугасность - 285 мл

· Объем газообразных продуктов взрыва - 730 л/кг

· Имеет невысокую чувствительность к удару (4-8 % взрывов при падении груза 10 кг с высоты 25 см) .

· Срок хранения около 25 лет, после чего тротил становится более чувствительным к детонации.

Получение[править | править вики-текст]

Первый этап: нитрование толуола смесью азотной и серной кислот до моно- и динитротолуолов. Серная кислота используется как водоотнимающий агент.

Второй этап: смесь моно- и динитротолуола нитруют в смеси азотной кислоты и олеума. Олеум используется как водоотнимающий агент.

Излишек кислоты от второго этапа можно использовать для первого

Физические свойства

Гексоген - белый кристаллический порошок. Без запаха, вкуса, сильный яд. Удельный вес - 1,816 г/см³, молярная масса - 222,12 г/моль. Нерастворим в воде, плохо растворим в спирте, эфире, бензоле, толуоле, хлороформе, лучше - в ацетоне, ДМФА, концентрированной азотной и уксусной кислотах. Разлагается серной кислотой, едкими щелочами, а также при нагревании.

Плавится гексоген при температуре 204,1 °C с разложением, при этом его чувствительность к механическим воздействиям сильно повышается, поэтому его не плавят, а прессуют. Прессуется плохо, поэтому, чтобы его лучше спрессовать, гексоген флегматизируют в ацетоне.

Получение

Метод Герца (1920) заключается в непосредственном нитровании гексаметилентетрамина (уротропина, (CH 2) 6 N 4) концентрированной азотной кислотой (HNO 3):

{\displaystyle \mathrm {(CH_{2})_{6}N_{4}+3HNO_{3}\longrightarrow \ (CH_{2})_{3}N_{3}(NO_{2})_{3}+3HCOH+NH_{3}} }

Производство гексогена по этому методу велось в Германии, Англии и других странах на установках непрерывного действия. Метод имеет ряд недостатков, главные из которых:

· малый выход гексогена по отношению к сырью (35-40 %);

· большой расход азотной кислоты.

Октоген (1,3,5,7-тетранитро-1,3,5,7-тетраазациклооктан, циклотетраметилентетранитрамин, HMX) - (CH 2) 4 N 4 (NO 2) 4 , термостойкое бризантное взрывчатое вещество. Впервые был получен как побочный продукт процесса получения гексогена конденсацией нитрата аммония с параформом в присутствии уксусного ангидрида. Представляет собой белый порошок кристаллического характера. Ядовит.

Физические свойства

· Плотность: 1960 кг/м³

· Температура плавления 278,5-280 °С (с разложением)

· Температура вспышки 290°С

Взрывчатые свойства

· Обладает высокой чувствительностью к удару.

· Скорость детонации 9100 м/с при плотности 1,84 г/см³.

· Объём газообразных продуктов взрыва 782 л/кг.

· Теплота взрыва 5,7 МДж/кг.

· Фугасность 480 мл

· Тротиловый эквивалент 1,7

Получение

Получают действием концентрированной азотной кислоты на уротропин в растворе уксусной кислоты, уксусного ангидрида и нитрата аммония в растворе азотной кислоты.

Пороха. Основные виды.

По́рох - многокомпонентная твёрдая взрывчатая смесь, способная к закономерному горению параллельными слоями без доступа кислорода извне с выделением большого количества тепловой энергии и газообразных продуктов, используемых для метания снарядов, движения ракет и в других целях . Его относят к классу метательных взрывчатых веществ. И ещё порох находится в пуле.

Виды порохов

Различают два вида пороха: смесевые (в том числе самый распространенный - дымный , или черный порох ) и нитроцеллюлозные (т. н. бездымные). Порох, применяемый в ракетных двигателях, называют твёрдым ракетным топливом. Основу нитроцеллюлозных порохов составляют нитроцеллюлоза и пластификатор. Помимо основных компонентов, эти пороха содержат различные добавки.

Порох является взрывчатым веществом метательного действия. При соответствующем условии инициирования пороха способны к детонации аналогично бризантным взрывчатым веществам, благодаря чему дымный порох долгое время применяли в качестве бризантного взрывчатого вещества. При длительном хранении больше установленного для данного пороха срока или при хранении в ненадлежащих условиях происходит химическое разложение компонентов пороха и изменение его эксплуатационных характеристик (режима горения, механических характеристик ракетных шашек и др.). Эксплуатация и даже хранение таких порохов крайне опасны и могут привести к взрыву.

Современные дымные , или чёрные пороха производятся по строгим нормативам и точной технологии. Все марки чёрного пороха делятся на зернистые и пороховую пудру (т. н. пороховая мякоть , ПМ). Основными компонентами дымного пороха являются калия нитрат, сера и древесный уголь; нитрат калия является окислителем (способствует быстрому горению), древесный уголь горючим (окисляемым окислителем), а сера - добавочным компонентом (так же, как и уголь, являясь топливом в реакции, она из-за невысокой температуры воспламенения улучшает поджигаемость). Во многих странах пропорции, установленные нормативами, несколько отличаются (но не сильно).

Зернистые пороха изготовляются в виде зёрен неправильной формы в пять стадий (не считая сушки и дозирования): помол компонентов в пудру, их смешение, прессование в диски, дробление на гранулы и полировка.

Эффективность горения дымного пороха во многом связана с тонкостью измельчения компонентов, полнотой смешения и формой зёрен в готовом виде.

Сорта дымных порохов (% состав KNO 3 , S, C.):

· шнуровой (для огнепроводных шнуров)(77 %, 12 %, 11 %);

· ружейный (для воспламенителей к зарядам из нитроцеллюлозных порохов и смесевых твёрдых топлив, а также для вышибных зарядов в зажигательных и осветительных снарядах);

· крупнозернистый (для воспламенителей);

· медленногорящий (для усилителей и замедлителей в трубках и взрывателях);

· минный (для взрывных работ) (75 %, 10 %, 15 %);

· охотничий (76 %, 9 %, 15 %);

· спортивный.

Дымный порох легко воспламеняется под действием пламени и искры (температура вспышки 300 °C), поэтому в обращении опасен. Хранится в герметической упаковке отдельно от других видов пороха. Гигроскопичен, при содержании влаги более 2 % плохо воспламеняется. Процесс производства дымных порохов предусматривает смешение тонкоизмельчённых компонентов и обработку полученной пороховой мякоти до получения зёрен заданных размеров. Коррозия стволов при использовании дымного пороха намного сильнее, чем от нитроцеллюлозных порохов, поскольку побочным продуктом сгорания является серная и сернистая кислоты. В настоящее время дымный порох используется в фейерверках. Примерно до конца XIX века применялся в огнестрельном оружии и взрывных боеприпасах.

Нитроцеллюлозные пороха

Порох был первым известным «топливом» для огнестрельного оружия и ракет. В отличие от долгое время использовавшегося дымного (чёрного) пороха на основе угля, сегодня получили широкое распространение нитроцеллюлозные пороха, так называемый бездымный порох; главным преимуществом этого вида пороха является бо́льший КПД и отсутствие дыма, мешающего обзору после выстрела.

По составу и типу пластификатора (растворителя) нитроцеллюлозные пороха делятся на: пироксилиновые, баллиститные и кордитные. Они применяются для изготовления современных взрывчатых веществ, порохов, пиротехнических изделий и для подрыва (инициирования) других взрывчатых веществ, то есть в качестве детонаторов. Таким образом, в современных образцах вооружения в качестве топлива в основном используют бездымный порох (порошок нитроцеллюлозы, NC).

ДРП, свойства и получение.

Выстрел унитарного заряда

Свойства порохов.

Литье: виды,применение

Литьё - заполнение чего-либо (формы, ёмкости, полости) материалом, находящимся в жидком агрегатном состоянии.

Известно множество разновидностей литья:

· в песчаные формы (ручная или машинная формовка);

· в многократные (цементные, графитовые, асбестовые формы);

· в оболочковые формы;

· по выплавляемым моделям;

· по замораживаемым ртутным моделям;

· центробежное литье;

· в кокиль ;

· литьё под давлением;

· по газифицируемым (выжигаемым) моделям;

· вакуумное литьё;

· электрошлаковое литьё;

· литьё с утеплением.

Так как разновидности литья различаются одновременно по многим разнородным признакам, то возможны и комбинированные варианты, например, электрошлаковое литьё в кокиль.

Литьё в песчаные формы

Литьё в песчаные формы - дешёвый, самый грубый, но самый массовый (до 75-80 % по массе получаемых в мире отливок) вид литья. Вначале изготовляется литейная модель (ранее - деревянная, в настоящее время часто используются пластиковые модели, полученные методами быстрого прототипирования ), копирующая будущую деталь. Модель засыпается песком илиформовочной смесью (обычно песок и связующее), заполняющей пространство между ею и двумя открытыми ящиками (опоками). Отверстия в детали образуются с помощью размещённых в форме литейных песчаных стержней, копирующих форму будущего отверстия. Насыпанная в опоки смесь уплотняется встряхиванием, прессованием или же затвердевает в термическом шкафу (сушильной печи). Образовавшиеся полости заливаются расплавом металла через специальные отверстия - литники. После остывания форму разбивают и извлекают отливку. После чего отделяютлитниковую систему (обычно это обрубка), удаляютоблой и проводяттермообработку .

Новым направлением технологии литья в песчаные формы является применение вакуумируемых форм из сухого песка без связующего. Для получения отливки данным методом могут применяться различные формовочные материалы, например песчано-глинистая смесь или песок в смеси со смолой и т. д. Для формирования формы используют опоку (металлический короб без дна и крышки). Опока имеет две полуформы, то есть состоит из двух коробов. Плоскость соприкосновения двух полуформ - поверхность разъёма. В полуформу засыпают формовочную смесь и утрамбовывают её. На поверхности разъёма делают отпечаток промодели (промодель соответствует форме отливки). Также выполняют вторую полуформу. Соединяют две полуформы по поверхности разъёма и производят заливку металла.

Литьё в кокиль

Литьё металлов в кокиль - более качественный способ. Изготавливается кокиль - разборная форма (чаще всего металлическая), в которую производится литьё. После застывания и охлаждения, кокиль раскрывается и из него извлекается изделие. Затем кокиль можно повторно использовать для отливки такой же детали. В отличие от других способов литья в металлические формы (литьё под давлением, центробежное литьё и др.), при литье в кокиль заполнение формы жидким сплавом и его затвердевание происходят без какого-либо внешнего воздействия на жидкий металл, а лишь под действиемсилы тяжести .

Основные операции и процессы: очистка кокиля от старой облицовки, прогрев его до 200-300°С, покрытие рабочей полости новым слоем облицовки, простановка стержней, закрывание частей кокиля, заливка металла, охлаждение и удаление полученной отливки. Процесс кристаллизации сплава при литье в кокиль ускоряется, что способствует получению отливок с плотным и мелкозернистым строением, а следовательно, с хорошей герметичностью и высокими физико-механическими свойствами. Однако отливки из чугуна из-за образующихся на поверхности карбидов требуют последующегоотжига . При многократном использовании кокиль коробится и размеры отливок в направлениях, перпендикулярных плоскости разъёма, увеличиваются.

В кокилях получают отливки из чугуна, стали, алюминиевых, магниевых и др. сплавов. Особенно эффективно применение кокильного литья при изготовлении отливок из алюминиевых и магниевых сплавов. Эти сплавы имеют относительно невысокую температуру плавления, поэтому один кокиль можно использовать до 10000 раз (с простановкой металлических стержней). До 45 % всех отливок из этих сплавов получают в кокилях. При литье в кокиль расширяется диапазон скоростей охлаждения сплавов и образования различных структур. Сталь имеет относительно высокую температуру плавления, стойкость кокилей при получении стальных отливок резко снижается, большинство поверхностей образуют стержни, поэтому метод кокильного литья для стали находит меньшее применение, чем для цветных сплавов. Данный метод широко применяется при серийном и крупносерийном производстве.

Литьё под давлением

ЛПД занимает одно из ведущих мест в литейном производстве. Производство отливок из алюминиевых сплавов в различных странах составляет 30-50 % общего выпуска (по массе) продукции ЛПД. Следующую по количеству и разнообразию номенклатуры группу отливок представляют отливки из цинковых сплавов. Магниевые сплавы для литья под давлением применяют реже, что объясняется их склонностью к образованию горячих трещин и более сложными технологическими условиями изготовления отливок. Получение отливок из медных сплавов ограничено низкой стойкостью пресс-форм.

Номенклатура выпускаемых отечественной промышленностью отливок очень разнообразна. Этим способом изготавливают литые заготовки самой различной конфигурации массой от нескольких граммов до нескольких десятков килограммов. Выделяются следующие положительные стороны процесса ЛПД:

· Высокая производительность и автоматизация производства, наряду с низкой трудоёмкостью на изготовление одной отливки, делает процесс ЛПД наиболее оптимальным в условиях массового и крупносерийного производств.

· Минимальные припуски на мехобработку или не требующие оной, минимальная шероховатость необрабатываемых поверхностей и точность размеров, позволяющая добиваться допусков до ±0,075 мм на сторону.

· Чёткость получаемого рельефа, позволяющая получать отливки с минимальной толщиной стенки до 0,6 мм, а также литые резьбовые профили.

· Чистота поверхности на необрабатываемых поверхностях, позволяет придать отливке товарный эстетический вид.

Также выделяют следующие негативное влияние особенностей ЛПД, приводящие к потере герметичности отливок и невозможности их дальнейшей термообработки:

· Воздушная пористость, причиной образования которой являются воздух и газы от выгорающей смазки, захваченные потоком металла при заполнении формы. Что вызвано неоптимальными режимами заполнения, а также низкой газопроницаемостью формы.

· Усадочные пороки, проявляющиеся из-за высокой теплопроводности форм наряду с затрудненными условиями питания в процессе затвердевания.

· Неметаллические и газовые включения, появляющиеся из-за нетщательной очистки сплава в раздаточной печи, а также выделяющиеся из твёрдого раствора.

Задавшись целью получения отливки заданной конфигурации, необходимо чётко определить её назначение: будут ли к ней предъявляться высокие требования по прочности, герметичности или же её использование ограничится декоративной областью. От правильного сочетания технологических режимов ЛПД, зависит качество изделий, а также затраты на их производство. Соблюдение условий технологичности литых деталей, подразумевает такое их конструктивное оформление, которое, не снижая основных требований к конструкции, способствует получению заданных физико-механических свойств, размерной точности и шероховатости поверхности при минимальной трудоёмкости изготовления и ограниченном использовании дефицитных материалов. Всегда необходимо учитывать, что качество отливок, получаемых ЛПД, зависит от большого числа переменных технологических факторов, связь между которыми установить чрезвычайно сложно из-за быстроты заполнения формы.

Основные параметры, влияющие на процесс заполнения и формирования отливки, следующие:

· давление на металл во время заполнения и подпрессовки;

· скорость прессования;

· конструкция литниково-вентиляционной системы;

· температура заливаемого сплава и формы;

· режимы смазки и вакуумирования.

Сочетанием и варьированием этих основных параметров, добиваются снижения негативных влияний особенностей процесса ЛПД. Исторически выделяются следующие традиционные конструкторско-технологические решения по снижению брака:

· регулирование температуры заливаемого сплава и формы;

· повышение давление на металл во время заполнения и подпрессовки;

· рафинирование и очистка сплава;

· вакуумирование;

· конструирование литниково-вентиляционной системы;

Также, существует ряд нетрадиционных решений, направленных на устранение негативного влияние особенностей ЛПД:

· заполнение формы и камеры активными газами;

· использование двойного хода запирающего механизма;

· использование двойного поршня особой конструкции;

· установка заменяемой диафрагмы;

· проточка для отвода воздуха в камере прессования;

Центробежное литьё

Центробежный метод литья (центробежное литьё) используется при получении отливок, имеющих форму тел вращения. Подобные отливки отливаются из чугуна, стали, бронзы и алюминия. При этом расплав заливают в металлическую форму, вращающуюся со скоростью 3000 об/мин.

Под действием центробежной силы расплав распределяется по внутренней поверхности формы и, кристаллизуясь, образует отливку. Центробежным способом можно получить двухслойные заготовки, что достигается поочерёдной заливкой в форму различных сплавов. Кристаллизация расплава в металлической форме под действием центробежной силы обеспечивает получение плотных отливок.

При этом, как правило, в отливках не бывает газовых раковин и шлаковых включений. Особыми преимуществами центробежного литья является получение внутренних полостей без примене

Просмотров