Высшая степень окисления хрома равна 4. Степень окисления хрома. Примеры решения задач

Окислительно-восстановительные свойства соединений хрома с различной степенью окисления.

Хром. Строение атома. Возможные степени окисления. Кислотно-основные свойства. Применение.

Cr +24)2)8)13)1

Для хрома характерны степени окисления +2, +3 и +6.

C увеличением степени окисления возрастают кислотные и окислительные свойства. Хром Производные Сr2+ - очень сильные восстановители. Ион Сr2+ образуется на первой стадии растворения Хрома в кислотах или при восстановлении Сr3+ в кислом растворе цинком. Гидрат закиси Сr(ОН)2 при обезвоживании переходит в Сr2О3. Соединения Сr3+ устойчивы на воздухе. Могут быть и восстановителями и окислителями. Сr3+ можно восстановить в кислом растворе цинком до Сr2+ или окислить в щелочном растворе до СrО42- бромом и других окислителями. Гидрооксид Сr(ОН)3 (вернее Сr2О3·nН2О) - амфотерное соединение, образующее соли с катионом Сr3+ или соли хромистой кислоты НСrО2 - хромиты (например, КСrО2, NaCrO2). Соединения Сr6+: хромовый ангидрид СrО3, хромовые кислоты и их соли, среди которых наиболее важны хроматы и дихроматы - сильные окислители.солей.

Используется в качестве износоустойчивых и красивых гальванических покрытий (хромирование). Хром применяется для производства сплавов: хром-30 и хром-90, незаменимых для производства сопел мощных плазмотронов и в авиакосмической промышленности.

Хром химически малоактивен. В обычных условиях он реагирует только с фтором (из неметаллов), образуя смесь фторидов.

Хроматы и дихроматы

Хроматы образуются при взаимодействии СгО3, или растворов хромовых кислот со щелочами:

СгОз + 2NaOH = Na2CrO4 + Н2О

Дихроматы получаются при действии на хроматы кислот:

2 Na2Cr2O4 + H2SO4 = Na2Cr2O7 + Na2SO4 + Н2О

Для соединений хрома характерны окислительно - восстановительные реакции.

Соединения хрома (II) - сильные восстановители, они легкоокисляются

4(5гС12 + О2 + 4HCI = 4СгС1з + 2Н2О

Для соединений хрома (!!!) характерны восстановительные свойства. Под действием окислителей они переходят:

в хроматы - в щелочной среде,

в дихроматы - в кислой среде.

Cr(ОН)3. CrOH + HCl = CrCl + H2O, 3CrOH + 2NaOH = Cr3Na2O3 + 3H2O

Хроматы(III) (устар. назв. хромиты).

Для соединений хрома характерны восстановительные свойства. Под действием окислителей они переходят:

в хроматы - в щелочной среде,

в дихроматы - в кислой среде.

2Na3 [Сг(OH)6] + ЗВг2 + 4NaOH = 2Na2CrO4 + 6NaBr + 8Н2О

5Cr2(SO4)3 + 6KMnO4 + 11H2O = 3K2Cr2O7 + 2H2Cr2O7 + 6MnSO4 + 9H2SO4

Соли хромовых кислот в кислой среде - сильные окислители:

3Na2SO3 + К2Сг2О7 + 4H2SO4 = 3Na2SO4 + Cr2(SO4)3 + K2SO4 + 4H2O

Хром (Cr), химический элемент VI группы периодической системы Менделеева. Относится к переходным металлом с атомным номером 24 и атомной массой 51,996. В переводе с греческого, название металла означает «цвет». Такому названию металл обязан разнообразной цветовой гамме, которая присуща его различным соединениям.

Физические характеристики хрома

Металл обладает достаточной твердостью и хрупкостью одновременно. По шкале Мооса твердость хрома оценивается в 5,5. Этот показатель означает, что хром имеет максимальную твердость из всех известных на сегодня металлов, после урана, иридия, вольфрама и бериллия. Для простого вещества хрома характерен голубовато-белый окрас.

Металл не относится к редким элементам. Его концентрация в земной коре достигает 0,02% масс. долей. В чистом виде хром не встречается никогда. Он содержится в минералах и рудах, которые являются главным источником добычи металла. Хромит (хромистый железняк, FeO*Cr 2 O 3) считается основным соединением хрома. Еще одним достаточно распространенным, однако менее важным минералом, является крокоит PbCrO 4 .

Металл легко поддается плавке при температуре 1907 0 С (2180 0 К или 3465 0 F). При температуре в 2672 0 С - закипает. Атомная масса металла составляет 51,996 г/моль.

Хром является уникальным металлом благодаря своим магнитным свойствам. В условиях комнатной температуры ему присуще антиферромагнитное упорядочение, в то время, как другие металлы обладают им в условиях исключительно пониженных температур. Однако, если хром нагреть выше 37 0 С, физические свойства хрома изменяются. Так, существенно меняется электросопротивление и коэффициент линейного расширения, модуль упругости достигает минимального значения, а внутреннее трение значительно увеличивается. Такое явление связано с прохождением точки Нееля, при которой антиферромагнитные свойства материала способны изменяться на парамагнитные. Это означает, что первый уровень пройден, и вещество резко увеличилось в объеме.

Строение хрома представляет собой объемно-центрированную решетку, благодаря которой металл характеризуется температурой хрупко-вязкого периода. Однако, в случае с данным металлом, огромное значение имеет степень чистоты, поэтому, величина находится в пределах -50 0 С - +350 0 С. Как показывает практика, раскристаллизированный металл не имеет никакой пластичности, но мягкий отжиг и формовка делают его ковким.

Химические свойства хрома

Атом имеет следующую внешнюю конфигурацию: 3d 5 4s 1 . Как правило, в соединениях хром имеет следующие степени окисления: +2, +3, +6, среди которых наибольшую устойчивость проявляет Сr 3+ .Кроме этого существуют и другие соединения, в которых хром проявляет совершенно иную степень окисления, а именно: +1, +4, +5.

Металл не отличается особой химической активностью. Во время нахождения хрома в обычных условиях, металл проявляет устойчивость к влаге и кислороду. Однако, данная характеристика не относится к соединению хрома и фтора - CrF 3 , которое при воздействии температур, превышающих 600 0 С, взаимодействует с парами воды, образуя в результате реакции Сr 2 О 3 , а также азотом, углеродом и серой.

Во время нагревания металлического хрома, он взаимодействует с галогенами, серой, кремнием, бором, углеродом, а также некоторыми другими элементами, в результате чего получаются следующие химические реакции хрома:

Cr + 2F 2 = CrF 4 (с примесью CrF 5)

2Cr + 3Cl 2 = 2CrCl 3

2Cr + 3S = Cr 2 S 3

Хроматы можно получить, если нагреть хром с расплавленной содой на воздухе, нитратами или хлоратами щелочных металлов:

2Cr + 2Na 2 CO 3 + 3O 2 = 2Na 2 CrO 4 + 2CO 2 .

Хром не обладает токсичностью, чего нельзя сказать о некоторых его соединениях. Как известно, пыль данного металла, при попадании в организм, может раздражать легкие, через кожу она не усваивается. Но, поскольку в чистом виде он не встречается, то его попадание в человеческий организм является невозможным.

Трехвалентный хром попадает в окружающую среду во время добычи и переработки хромовой руды. В человеческий организм попадание хрома вероятно в виде пищевой добавки, используемой в программах по похудению. Хром с валентностью, равной +3, является активным участником синтеза глюкозы. Ученые установили, что излишнее употребление хрома особого вреда человеческому организму не наносит, поскольку не происходит его всасывание, однако, он способен накапливаться в организме.

Соединения, в котором участвует шестивалентный металл, являются крайне токсичными. Вероятность их попадания в человеческий организм появляется во время производства хроматов, хромирования предметов, во время проведения некоторых сварочных работ. Попадание такого хрома в организм чревато серьезными последствиями, так как соединения, в которых присутствует шестивалентный элемент, представляют собой сильные окислители. Поэтому, могут вызвать кровотечение в желудке и кишечнике, иногда с прободением кишечника. При попадании таких соединений на кожу возникают сильные химические реакции в виде ожогов, воспалений, возникновения язв.

В зависимости от качества хрома, которое необходимо получить на выходе, существует несколько способов производства металла: электролизом концентрированных водных растворов оксида хрома, электролизом сульфатов, а также восстановлением оксидом кремния. Однако, последний способ не очень популярен, так как при нем на выходе получается хром с огромным количеством примесей. Кроме того, он также является экономически невыгодным.

Характерные степени окисления хрома
Степень окисления Оксид Гидроксид Характер Преобладающие формы в растворах Примечания
+2 CrO (чёрный) Cr(OH)2 (желтый) Основный Cr2+ (соли голубого цвета) Очень сильный восстановитель
Cr2O3 (зелёный) Cr(OH)3 (серо-зеленый) Амфотерный

Cr3+ (зеленые или лиловые соли)
- (зелёный)

+4 CrO2 не существует Несолеобразующий -

Встречается редко, малохарактерна

+6 CrO3 (красный)

H2CrO4
H2Cr2O7

Кислотный

CrO42- (хроматы, желтые)
Cr2O72- (дихроматы, оранжевые)

Переход зависит от рН среды. Сильнейший окислитель, гигроскопичен, очень ядовит.

Задание №1

Степень окисления +2 во всех соединениях проявляет

Ответ: 4

Пояснение:

Из всех предложенных вариантов степень окисления +2 в сложных соединениях проявляет только цинк, являясь элементом побочной подгруппы второй группы, где максимальная степень окисления равна номеру группы.

Олово – элемент главной подгруппы IV группы, металл, проявляет степени окисления 0 (в простом веществе), +2, +4 (номер группы).

Фосфор – элемент главной подгруппы главной группы, являясь неметаллом, проявляет степени окисления от -3 (номер группы – 8) до +5 (номер группы).

Железо – металл, элемент расположен в побочной подгруппе главной группы. Для железа характерны степени окисления: 0, +2, +3, +6.

Задание №2

Соединение состава KЭО 4 образует каждый из двух элементов:

1) фосфор и хлор

2) фтор и марганец

3) хлор и марганец

4) кремний и бром

Ответ: 3

Пояснение:

Соль состава KЭО 4 содержит кислотный остаток ЭО 4 - , где кислород обладает степенью окисления -2, следовательно, степень окисления элемента Э в этом кислотном остатке равна +7. Из предложенных вариантов подходят хлор и марганец – элементы главной и побочной подгруппы VII группы соответственно.

Фтор – также элемент главной подгруппы VII группы, однако, являясь самым электроотрицательным элементом, не проявляет положительных степеней окисления (0 и -1).

Бор, кремний и фосфор – элементы главных подгрупп 3, 4 и 5 групп соответственно, поэтому в солях проявляют соответствующие максимальные степени окисления +3, +4, +5.

Задание №3

  • 1. Zn и Cr
  • 2. Si и B
  • 3. Fe и Mn
  • 4. P и As

Ответ: 4

Пояснение:

Одинаковую высшую степень окисления в соединениях, равную номеру группы (+5), проявляют P и As. Это элементы расположены в главной подгруппе V группы.

Zn и Cr – элементы побочных подгрупп II и VI групп соответственно. В соединениях цинк проявляет высшую степень окисления +2, хром - +6.

Fe и Mn – элементы побочных подгруппы VIII и VII групп соответственно. Высшая степень окисления у железа составляет +6, у марганца - +7.

Задание №4

Одинаковую высшую степень окисления в соединениях проявляют

  • 1. Hg и Cr
  • 2. Si и Al
  • 3. F и Mn
  • 4. P и N

Ответ: 4

Пояснение:

Одинаковую высшую степень окисления в соединениях, равную номеру группы (+5), проявляют P и N. Эти элементы расположены в главной подгруппе V группы.

Hg и Cr – элементы побочных подгрупп II и VI групп соответственно. В соединениях ртуть проявляет высшую степень окисления +2, хром – +6.

Si и Al − элементы главных подгруппы IV и III групп соответственно. Следовательно, для кремния максимальная степень окисления в сложных соединениях равна +4 (номер группы, где расположен кремний), для алюминия − +3 (номер группы, где расположен алюминия).

F и Mn – элементы главной и побочной подгрупп VII групп соответственно. Однако фтор, являясь самым электроотрицательным элементом Периодической системы химических элементов, не проявляет положительных степеней окисления: в сложных соединения его степень окисления равна −1 (номер группы−8). Высшая степень окисления марганца составляет +7.

Задание №5

Степень окисления +3 азот проявляет в каждом из двух веществ:

  • 1. HNO 2 и NH 3
  • 2. NH 4 Cl и N 2 О 3
  • 3. NaNO 2 и NF 3
  • 4. HNO 3 и N 2

Ответ: 3

Пояснение:

В азотистой кислоте HNO 2 степень окисления кислорода в кислотном остатке равна -2, у водорода - +1, следовательно, чтобы молекула оставалась электронейтральной, степень окисления азота составляет +3. В аммиаке NH 3 азот является более электроотрицательным элементом, поэтому он оттягивает на себя электронную пару ковалентной полярной связи и обладает отрицательной степенью окисления -3, степень окисления водорода в аммиаке составляет +1.

Хлорид аммония NH 4 Cl является аммонийной солью, поэтому степень окисления азота такая же, как в аммиаке, т.е. равна -3. В оксидах степень окисления кислорода всегда равна -2, поэтому у азота она составляет +3.

В нитрите натрия NaNO 2 (соли азотистой кислоты) степень окисления азота такая же, как в азота в азотистой кислоте, т.к. составляет +3. Во фториде азота степень окисления азота +3, поскольку фтор является самым электроотрицательным элементом Периодической системы и в сложных соединениях проявляет отрицательную степень окисления -1. Данный вариант ответа удовлетворяет условию задания.

В азотной кислоте азот обладает высшей степенью окисления, равной номеру группы (+5). Азот как простое соединение (поскольку состоит из атомов одного химического элемента) обладает степенью окисления 0.

Задание №6

Высшему оксиду элемента VI группы соответствует формула

  • 1. Э 4 O 6
  • 2. ЭO 4
  • 3. ЭO 2
  • 4. ЭО 3

Ответ: 4

Пояснение:

Высшим оксидом элемента является оксид элемента с его максимальной степени окисления. В группе наивысшая степень окисления элемента равна номеру группы, следовательно, в VI группе максимальная степень окисления элемента равна +6. В оксидах кислород проявляет степень окисления -2. Цифры, стоящие под символом элемента, называются индексами и указывает на количество атомов этого элемента в молекуле.

Первый вариант является неверным, т.к. элемент обладает степенью окисления 0-(-2)⋅6/4 = +3.

Во втором варианте элемент обладает степенью окисления 0-(-2) ⋅ 4 = +8.

В третьем варианте степень окисления элемента Э: 0-(-2) ⋅ 2 = +4.

В четвертом варианте степень окисления элемента Э: 0-(-2) ⋅ 3 = +6, т.е. это искомый ответ.

Задание №7

Степень окисления хрома в дихромате аммония (NH 4) 2 Cr 2 O 7 равна

  • 1. +6
  • 2. +2
  • 3. +3
  • 4. +7

Ответ: 1

Пояснение:

В бихромате аммония (NH 4) 2 Cr 2 O 7 в катионе аммония NH 4 + азот как более электроотрицательный элемент обладает низшей степенью окисления -3, водород заряжен положительно +1. Следовательно, весь катион обладает зарядом +1, но, поскольку этих катионов 2, то общий заряд составляет +2.

Для того чтобы молекула оставалась электронейтральной, у кислотного остатка Cr 2 O 7 2− заряд должен быть -2. Кислород в кислотных остатках кислот и солей всегда обладает зарядом -2, поэтому 7 атомов кислорода, входящих в состав молекулы бихромата аммония, заряжены -14. Атомов хрома Cr в молекулы 2, следовательно, если заряд хрома обозначить за x, то имеем:

2x + 7 ⋅ (-2) = -2, где x = +6. Заряд хрома в молекуле бихромата аммония равен +6.

Задание №8

Степень окисления +5 возможна для каждого из двух элементов:

1) кислорода и фосфора

2) углерода и брома

3) хлора и фосфора

4) серы и кремния

Ответ: 3

Пояснение:

В первом предложенном варианте ответов только фосфор как элемент главной подгруппы V группы может проявлять степень окисления +5, которая является для него максимальной. Кислород (элемент главной подгруппы VI группы), являясь элементом с высокой электроотрицательностью, в оксидах проявляет степень окисления -2, как простое вещество – 0 и в соединении со фтором OF 2 – +1. Степень окисления +5 для него не характерна.

Углерод и бром – элементы главных подгрупп IV и VII групп соответственно. Для углерода характерна максимальная степень окисления +4 (равна номеру группы), а бром проявляет степени окисления -1, 0 (в простом соединении Br 2), +1, +3, +5 и +7.

Хлор и фосфор – элементы главных подгрупп VII и V групп соответственно. Фосфор проявляется максимальную степень окисления +5 (равную номеру группы), для хлора аналогично брому характерны степени окисления -1, 0 (в простом соединении Cl 2), +1, +3, +5, +7.

Сера и кремний – элементы главных подгрупп VI и IV групп соответственно. Сера проявляет широкий спектр степеней окисления от -2 (номер группы − 8) до +6 (номер группы). Для кремния максимальная степень окисления равна +4 (номер группы).

Задание №9

  • 1. NaNO 3
  • 2. NaNO 2
  • 3. NH 4 Cl
  • 4. NO

Ответ: 1

Пояснение:

В нитрате натрия NaNO 3 натрий имеет степень окисления +1 (элемент I группы), атомов кислорода в кислотном остатке 3, каждый из которых имеет степень окисления −2, следовательно, чтобы молекула оставалась электронейтральной, азот должен иметь степень окисления: 0 − (+1) − (−2)·3 = +5.

В нитрите натрия NaNO 2 атом натрий также имеет степень окисления +1 (элемент I группы), атомов кислорода в кислотном остатке 2, каждый из которых имеет степень окисления −2, следовательно, чтобы молекула оставалась электронейтральной, азот должен обладать степенью окисления: 0 − (+1) − (−2)·2 = +3.

NH 4 Cl − хлорид аммония. В хлоридах атомы хлора имеют степень окисления −1, атомы водорода, которого в молекуле 4, заряжен положительно, следовательно, чтобы молекула оставалась электронейтральной, степень окисления азота: 0 − (−1) − 4 ·(+1) = −3. В аммиаке и катионах аммонийных солей азот имеет минимальную степень окисления −3 (номер группы, в которой расположен элемент, − 8).

В молекуле оксида азота NO кислород проявляет минимальную степень окисления −2, как во всех оксидах, следовательно, степень окисления азота равна +2.

Задание №10

Высшую степень окисления азот проявляет в соединении, формула которого

  • 1. Fe(NO 3) 3
  • 2. NaNO 2
  • 3. (NH 4) 2 SO 4
  • 4. NO 2

Ответ: 1

Пояснение:

Азот – элемент главной подгруппы V группы, следовательно, он может проявлять максимальную степень окисления, равную номеру группы, т.е. +5.

Одна структурная единица нитрата железа Fe(NO 3) 3 состоит из одного иона Fe 3+ и трех нитрат-ионов. В нитрат-ионах атомы азота независимо от типа противоиона имеют степень окисления +5.

В нитрите натрия NaNO 2 натрий имеет степень окисления +1 (элемент главной подгруппы I группы), атомов кислорода в кислотном остатке 2, каждый из которых имеет степень окисления −2, следовательно, чтобы молекула оставалась электронейтральной, азот должен обладать степенью окисления 0 − (+1) − (−2)⋅2 = +3.

(NH 4) 2 SO 4 – сульфат аммония. В солях серной кислоты анион SO 4 2− имеет заряд 2−, следовательно, каждый катион аммония заряжен 1+. На водороде заряд +1, поэтому на азоте −3 (азот более электроотрицателен, поэтому оттягивает на себя общую электронную пару связи N−H). В аммиаке и катионах аммонийных солей азот имеет минимальную степень окисления −3 (номер группы, в которой расположен элемент, − 8).

В молекуле оксида азота NO 2 кислород проявляет минимальную степень окисления −2, как во всех оксидах, следовательно, степень окисления азота равна +4.

Задание №11

28910E

В соединениях состава Fe(NO 3) 3 и CF 4 степень окисления азота и углерода равна соответственно

Ответ: 4

Пояснение:

Одна структурная единица нитрата железа (III) Fe(NO 3) 3 состоит из одного иона железа Fe 3+ и трех нитрат-ионов NO 3 − . В нитрат-ионах азот всегда имеет степень окисления +5.

Во фториде углерода CF 4 фтор является более электроотрицательным элементом и оттягивает на себя общую электронную пару связи C-F, проявляя степень окисления -1. Следовательно, углерод C имеет степень окисления +4.

Задание №12

A32B0B

Степень окисления +7 хлор проявляет в каждом из двух соединений:

  • 1. Ca(OCl) 2 и Cl 2 O 7
  • 2. KClO 3 и ClO 2
  • 3. BaCl 2 и HClO 4
  • 4. Mg(ClO 4) 2 и Cl 2 O 7

Ответ: 4

Пояснение:

В первом варианте атомы хлора обладают степенями окисления +1 и +7 соответственно. Одна структурная единица гипохлорита кальция Ca(OCl) 2 состоит из одного иона кальция Ca 2+ (Ca - элемент главной подгруппы II группы) и двух гипохлорит-ионов OCl − , каждый из которых имеет заряд 1−. В сложных соединениях, кроме OF 2 и различных перекисей, кислород всегда имеет степень окисления −2, поэтому, очевидно, что хлор имеет заряд +1. В оксиде хлора Cl 2 O 7 , как и во всех оксидах, кислород обладает степенью окисления −2, следовательно, на хлор в этом соединении имеет степень окисления +7.

В хлорате калия KClO 3 атом калия имеет степень окисления +1, а кислород - −2. Для того чтобы молекула оставалась электронейтральной, хлор должен проявлять степень окисления +5. В оксиде хлора ClO 2 кислород, как и в любом другом оксиде, обладает степенью окисления −2, следовательно, для хлора его степень окисления равна +4.

В третьем варианте катион бария в сложном соединении заряжен +2, следовательно, на каждом анионе хлора в соли BaCl 2 сосредоточен отрицательный заряд −1. В хлорной кислоте HClO 4 общий заряд 4 атомов кислорода составляет −2⋅4 = −8, на катионе водорода заряд +1. Чтобы молекула оставалась электронейтральной, заряд хлора должен составлять +7.

В четвертом варианте в молекуле перхлората магния Mg(ClO 4) 2 заряд магния +2 (во всех сложных соединениях магний проявляет степень окисления +2), поэтому на каждый анион ClO 4 − приходится заряд 1−. В общем 4 иона кислорода, где каждый проявляет степень окисления −2, заряжены −8. Следовательно, чтобы общий заряд аниона составлял 1−, на хлоре должен быть заряд +7. В оксиде хлора Cl 2 O 7 , как было объяснено выше, заряд хлора составляет +7.

ОПРЕДЕЛЕНИЕ

Хром расположен в четвертом периоде VI группы побочной (B) подгруппы Периодической таблицы. Обозначение – Cr. В виде простого вещества - серовато-белый блестящий металл.

Хром имеет структуру объемно-центрированной кубической решетки. Плотность - 7,2 г/см 3 . Температуры плавления и кипения равны 1890 o С и 2680 o С, соответственно.

Степень окисления хрома в соединениях

Хром может существовать в виде простого вещества - металла, а степень окисления металлов в элементарном состоянии равна нулю , так как распределение электронной плотности в них равномерно.

Степени окисления (+2) и (+3) хром проявляет в оксидах (Cr +2 O, Cr +3 2 O 3), гидроксидах (Cr +2 (OH) 2 , Cr +3 (OH) 3), галогенидах (Cr +2 Cl 2 , Cr +3 Cl 3), сульфатах (Cr +2 SO 4 , Cr +3 2 (SO 4) 3) и др. соединениях.

Для хрома также характерна степень окисления (+6) : Cr +6 O 3 ,H 2 Cr +6 O 4 , H 2 Cr +6 2 O 7 , K 2 Cr +6 2 O 7 и т.д.

Примеры решения задач

ПРИМЕР 1

ПРИМЕР 2

Задание Одинаковую степень окисления фосфор имеет в соединениях:

а) Ca 3 P 2 и H 3 PO 3 ;

б) KH 2 PO 4 и KPO 3 ;

в) P 4 O 6 и P 4 O 10 ;

г) H 3 PO 4 и H 3 PO 3 .

Решение Для того, чтобы дать верный ответ на поставленный вопрос будем поочередно определять степень окисления фосфора в каждой паре предложенных соединений.

а) Степень окисления кальция равна (+2), кислорода и водорода - (-2) и (+1), соответственно. Примем значение степени окисления фосфора за «х» и «у» в предложенных соединениях:

3 ×2 + х ×2 = 0;

3 + у + 3×(-2) = 0;

Ответ неверный.

б) Степень окисления калия равна (+1), кислорода и водорода - (-2) и (+1), соответственно. Примем значение степени окисления хлора за «х» и «у» в предложенных соединениях:

1 + 2×1 +х + (-2)×4 = 0;

1 + у + (-2)×3 = 0;

Ответ верный.

Ответ Вариант (б).

Введение

Степень окисления (СО) - это условное обозначение в химии, служащее для того, чтобы определять заряд атома у какого-либо химического элемента (или группы элементов) . Без степеней окисления не решается ни одна задача, не составляется ни одно уравнение, но самое главное - без них мы не можем чётко определить свойства элемента и то, какую роль он будет играть в различных соединениях.

Знаменательно, что периодическая система (ПС) Д.И. Менделеева сгруппирована гениальнейшим образом: все элементы разделены по периодам, группам, подгруппам, их порядковые номера также соответствуют определённым показателям. Благодаря этому нам не приходится заучивать качества каждого химического элемента (ХЭ) наизусть, потому что легко можно найти его в таблице и определить всё, что требуется. Однако даже в таком случае некоторые люди, забывая школьные знания по курсу химии (или пренебрегая ими когда-то), вынуждены вернуться к изучению данной темы подробнее.

Итак, для начала необходимо сформировать верные объективные представления о хроме (Cr ), разобраться с его положением в ПС, а затем можно будет приступить к наиболее важной части - практике.
Хром - Cr , положение в таблице Менделеева, физические и химические свойства
Хром - это твёрдое вещество, металл, блестящий, серебристо-белого (или голубоватого) цвета . Он достаточно ломкий, но при этом имеет несравненный плюс по сравнению со многими другими металлами - устойчивость к заражению коррозией; именно поэтому он является важным компонентом при производстве нержавеющей стали, а также используется для нанесения на поверхность других металлов, более склонных к коррозии. Хром обладает плохой тепло- и электропроводностью.

ХЭ располагается в VI группе, 4 периоде, носит порядковый номер 24 и обладает атомной массой равной 52 г/моль. Благодаря пассивированию хром не взаимодействует с серной (H 2 SO 4 ) и азотной (HNO 3 ) кислотами, проявляет устойчивость в воздухе.

Это амфотерный металл - значит, он может растворяться как в кислотах, так и в щелочах . Элемент растворяется в сильных разбавленных кислотах (например, соляная кислота HCl ), в нормальных условиях (н.у.) взаимодействует только с фтором (F ). При нагревании хром может осуществлять взаимодействие с элементами VII группы (галогены), кислородом O 2 , бором B, азотом N 2 , серой S 2 , кремнием Si . Если раскалить Cr , то способен вступить в реакцию с водяными парами.

Теперь поговорим непосредственно о том, какие степени окисления бывают у данного ХЭ: он может приобретать СО +4, +6, а также +2 в безвоздушном пространстве, +3 - в пространстве с воздухом. Хром, как любой другой металл, является сильным восстановителем.

Вещества с различными степенями окисления

  • +2. Когда Cr приобретает СО +2, вещество демонстрирует основные и очень сильные восстановительные свойства. К примеру, оксид хрома (II) - CrO , гидроксид хрома - Cr(OH) 2 , множество солей. Синтезируются соединения этого элемента с фтором(CrF 2 ), хлором(CrCl 2 ) и так далее.
  • +3. Эти вещества обладают амфотерными свойствами, могут быть разных цветов (но преимущественно зелёного H 2 O ). Для примера приведём оксид Cr 2 O 3 (это зеленоватый порошок, который не растворяется в), Cr(OH) 3 , хромиты NaCrO 2 .
  • +4. Такие соединения встречаются очень редко: они не образуют солей, кислот, с ними почти не производятся какие-либо работы. Но из известных веществ существуют оксид CrO 2 , тетрагалогенид CrF 4 , CrCl 4 .
  • +6. Хром с СО +6, образуя соли, имеет кислотный характер, очень ядовитый, гидроскопичный, а также имеющий сильные окислительные свойства. Примеры: CrO 3 (имеет вид кристаллов красного цвета), K 2 CrO 4 , H 2 CrO 4 , H 2 Cr 2 O 7 . Элемент способен образовывать два вида гидроксидов (уже перечислены).

Как определять СО в сложных веществах

С правилом «крест-накрест» вы наверняка уже знакомы. А что, если соединение имеет, например, целых три элемента ?

В этом случае мы смотрим на последний элемент вещества, определяем его степень окисления и умножаем на коэффициент, находящийся справа (конечно, если он есть). Мысленно отделяем последний элемент (с уже определённой степенью окисления) от двух других элементов. Нам требуется, чтобы СО двух первых и последнего элементов в сумме была равна нулю.

Рассмотрим пример:

  • PbCrO 4 - хромат свинца (II), имеющий вид красной соли. На конце формулы находится кислород, степень окисления которого всегда (за исключением некоторых случаев) будет -2. -2*4=-8. Pb (свинец) имеет СО +2. Дальнейшие действия будут похожи на алгебраическое уравнение, но если честно, то когда человек уже неплохо разбирается в определении степеней окислений и умеет пользоваться таблицей растворимости, вполне возможно избежать таких расчётов. Итак, элемент с неизвестной степенью окисления (хром) обозначим за буквенную переменную. 2+x-8=0;x=8-2;x=6 . Переменная равна 6, следовательно, степень окисления хрома становится +6.

Степени окисления в следующих формулах попробуйте расставить сами:

  1. Na 2 CrO 4 ;
  2. BaCrO 4 ;
  3. Fe(CrO 2) 2 ;
  4. Cr 2 O 7 ;
  5. H 2 CrO 4 .

Хром - один из самых интересных химических элементов, соединения с которым - штука сложная, но необходимая для понимания . Будет замечательно, если данные примеры помогут разобраться со столь кропотливой темой.

Редакция "сайт"

Просмотров