Какая радиация не доходит до поверхности земли. §21. Солнечная радиация

АТМОСФЕРА

Атмосфера. Строение состав, происхождение, значение для ГО. Тепловые процессы в атмосфере. Солнечная радиация, ее виды, широтное распределение и преобразование земной поверхностью.

Атмосфера воздушная оболочка Земли, удерживаемая силой притяжения и участвующая во вращении планеты. Сила земного притяжения удерживает атмосферу вблизи поверхности Земли. Наибольшее давление и плотность атмосферы наблюдаются у земной поверхности, по мере поднятия вверх давление и плотность уменьшаются. На высоте 18 км давление убывает в 10 раз, на высоте 80 км – в 75 000 раз. Нижней границей атмосферы является поверхность Земли, верхней границей условно принята высота 1000-1200 км. Масса атмосферы составляет 5,13 х 10 15 т, причем 99% этого количества содержится в нижнем слое до высоты 36 км.

Доказательства существования высоких слоев атмосферы следующие:

На высоте 22-25 км в атмосфере располагаются перламутровые облака;

На высоте 80 км бывают видны серебристые облака;

На высоте около 100-120 км наблюдается сгорание метеоритов, т.е. здесь атмосфера обладает еще достаточной плотностью;

На высоте около 220 км начинается рассеивание света газами атмосферы 9явление сумерек);

Полярные сияния начинаются примерно на высоте 1000-1200 км, данное явление объясняется ионизацией воздуха корпускулярными потоками, идущими от солнца. Сильно разреженная атмосфера простирается до высоты 20 000 км, она образует земную корону, незаметно переходя в межпланетный газ.

Атмосфера, как и планета в целом, вращается против часовой стрелки с запада на восток. Из-за вращения она приобретает форму эллипсоида, т.е. толщина атмосферы у экватора больше, чем вблизи полюсов. Она имеет выступ в направлении, противоположном Солнцу, этот «газовый хвост» Земли, разреженный как у комет, имеет длину около 120 тыс. км. Атмосфера связана с другими геосферами тепловлагообменом. Энергией атмосферных процессов служит электромагнитное излучение Солнца.

Развитие атмосферы. Так как водород и гелий наиболее распространенные элементы в космосе, то они, несомненно, входили и в состав протопланетного газопылевого облака, из которого возникла Земля. Вследствие очень низкой температуры этого облака самая первая земная атмосфера только и могла состоять из водорода и гелия, т.к. все другие элементы вещества, из которого слагалось облако, были в твердом состоянии. Такая атмосфера наблюдается у планет-гигантов, очевидно, из-за большого притяжения планет и удаленности от Солнца они сохранили первичные атмосферы.

Затем последовал разогрев Земли: тепло порождалось гравитационным сжатием планеты и распадом внутри ее радиоактивных элементов. Земля потеряла водородно-гелиевую атмосферу и создала свою собственную вторичную атмосферу из газов, выделившихся из ее недр (углекислый газ, аммиак, метан, сероводород). По мнению А.П. Виноградова (1959), в этой атмосфере больше всего было H 2 O, затем CO 2 , CO, HCl, HF, H 2 S, N 2 , NH 4 Cl и CH 4 (примерно таков же состав и современных вулканических газов). В. Соколов (1959) полагал, что здесь были также H 2 и NH 3 . Кислород отсутствовал, в атмосфере господствовали восстановительные условия. Сейчас подобные атмосферы наблюдаются у Марса и Венеры, они на 95% состоят из углекислого газа.

Следующий этап развития атмосферы был переходным – от абиогенного к биогенному, от восстановительных условий к окислительным. Главными составными частями газовой оболочки Земли стали N 2 , CO 2 , CO. В качестве побочных примесей - CH 4 , O 2 . Кислород возникал из молекул воды в верхних слоях атмосферы под действием ультрафиолетовых лучей Солнца; мог он выделятся и из тех окислов, из каких состояла земная кора, но подавляющая часть его уходила вновь на окисление минералов земной коры или на окисление водорода и его соединений в атмосфере.

Последний этап развития азотно-кислородной атмосферы связан с появлением жизни на Земле и, с возникновением механизма фотосинтеза. Содержание кислорода – биогенного – стало возрастать. Параллельно с этим атмосфера почти полностью потеряла двуокись углерода, часть которого вошла в огромные залежи угля и карбонатов.

Таков путь от водородно-гелиевой атмосферы до современной, главную роль в которой теперь играют азот и кислород, а в качестве примесей присутствуют аргон и углекислый газ. Современный азот также биогенного происхождения.

Состав газов атмосферы.

Атмосферный воздух – механическая смесь газов, в которой во взвешенном состоянии содержатся пыль и вода. Чистый и сухой воздух на уровне моря представляет собой смесь нескольких газов, причём соотношение между главными составляющими атмосферу газами – азотом (объемная концентрация 78,08 %) и кислородом (20,95 %) – постоянно. Кроме них, в атмосферном воздухе содержатся аргон (0,93 %) и углекислый газ (0,03%). Количество остальных газов – неона, гелия, метана, криптона, ксенона, водорода, йода, угарного газа и оксидов азота – ничтожно мало (менее 0,1 %) (табл.).

Таблица 2

Газовый состав атмосферы

кислород

углекислый газ

В высоких слоях атмосферы состав воздуха меняется под воздействием жесткого излучения Солнца, которое приводит к распаду (диссоциации) молекул кислорода на атомы. Атомарный кислород является основным компонентом высоких слоев атмосферы. Наконец, в наиболее удаленных от поверхности Земли слоях атмосферы главными компонентами становятся самые легкие газы – водород и гелий. В верхних слоях атмосферы обнаружено новое соединение – гидроксил ОН. Наличие этого соединения объясняет образование водяного пара на больших высотах в атмосфере. Поскольку основная масса вещества сосредоточена на расстоянии 20 км от поверхности Земли, то изменения состава воздуха с высотой не оказывают заметного влияния на общий состав атмосферы.

Важнейшими компонентами атмосферы являются озон и углекислый газ. Озон – трехатомный кислород (О 3 ), присутствующий в атмосфере от поверхности Земли до высоты 70 км. В приземных слоях воздуха он образуется, в основном, под влиянием атмосферного электричества и в процессе окисления органического веществ, а в более высоких слоях атмосферы (стратосфере) – в результате воздействия ультрафиолетовой радиации Солнца на молекулу кислорода. Основная масса озона находится в стратосфере (по этой причине стратосферу довольно часто называют озоносферой). Слой максимальной концентрации озона на высоте 20-25 км получил название озонового экрана. В целом, озоновый слой поглощает около 13 % солнечной энергии. Снижение концентрации озона, над определенными районами получило название «озоновых дыр».

Углекислый газ вместе с водяным паром вызывает парниковый эффект атмосферы. Парниковый эффект – нагрев внутренних слоев атмосферы, объясняющийся способностью атмосферы пропускать коротковолновое излучение Солнца и не выпускать длинноволновое излучение Земли. Если бы углекислого газа в атмосфере было бы в два раза больше, средняя температура Земли достигла бы 18 0 С, сейчас она равна 14-15 0 С.

Общий вес газов атмосферы составляет приблизительно 4,5·10 15 т. Таким образом, «вес» атмосферы, приходящийся на единицу площади, или атмосферное давление, составляет на уровне моря примерно 10,3 т/м 2 .

В воздухе много твердых частиц, диаметр которых составляет доли микрона. Они являются ядрами конденсации. Без них было бы невозможно образование туманов, облаков, выпадение осадков. С твердыми частицами в атмосфере связаны многие оптические и атмосферные явления. Пути поступления их в атмосферу различны: вулканический пепел, дым при сжигании топлива, пыльца растений, микроорганизмы. В последнее время ядрами конденсации служат промышленные выбросы, продукты радиоактивного распада.

Важной составной частью атмосферы является водяной пар, количество его во влажных экваториальных лесах достигает 4%, в полярных районах снижается до 0,2%. Водяной пар поступает в атмосферу вследствие испарения с поверхности почвы и водоемов, а также транспирации влаги растениями. Водяной пар является парниковым газом, вместе с углекислым газом он удерживает большую часть длинноволнового излучения Земли, предохраняя планету от охлаждения.

Атмосфера не является идеальным изолятором; она обладает способностью проводить электричество благодаря воздействию ионизаторов – ультрафиолетового излучения Солнца, космических лучей, излучения радиоактивных веществ. Максимальная электрическая проводимость наблюдается на высоте 100-150 км. В результате совокупного действия ионов атмосферы и заряда земной поверхности создается электрическое поле атмосферы. По отношению к земной поверхности атмосфера заряжена положительно. Выделяют нейтросферу – слой с нейтральным составом (до 80 км) и ионосферу – ионизированный слой.

Строение атмосферы.

Различают несколько основных слоев атмосферы. Нижний, прилегающий к земной поверхности, называется тропосферой (высота 8-10 км у полюсов, 12 км в умеренных широтах и 16-18 км – над экватором). Температура воздуха с высотой постепенно понижается – в среднем на 0,6єС на каждые 100 м подъема, что заметно проявляется не только в горных районах, но и на возвышенностях Беларуси.

В тропосфере содержится до 80% всей массы воздуха, основное количество атмосферных примесей и практически весь водяной пар. Именно в этой части атмосферы на высоте 10-12 км образуются облака, возникают грозы, дожди и другие физические процессы, формирующие погоду и определяющие климатические условия в разных областях нашей планеты. Нижний слой тропосферы, примыкающий непосредственно к земной поверхности называют приземным слоем.

Влияние земной поверхности простирается приблизительно до высоты 20 км, а далее нагревание воздуха происходит непосредственно Солнцем. Таким образом, граница ГО, лежащая на высоте 20-25 км, определяется, в том числе, и тепловым воздействием земной поверхности. На этой высоте исчезают широтные различия в температуре воздуха, и географическая зональность размывается.

Выше начинается стратосфера , которая простирается до высоты 50-55 км от поверхности океана или суши. Этот слой атмосферы значительно разрежен, количество кислорода и азота уменьшается, а водорода, гелия и других легких газов увеличивается. Образующийся здесь озоновый слой поглощает ультрафиолетовую радиацию и сильно влияет на тепловые условия поверхности Земли и физические процессы в тропосфере. В нижней части стратосферы температура воздуха постоянна, здесь располагается изотермический слой. Начиная с высоты 22 км, температура воздуха повышается, на верхней границе стратосферы она достигает 0 0 С (повышение температуры объясняется наличием здесь озона, поглощающего солнечную радиацию). В стратосфере происходят интенсивные горизонтальные перемещения воздуха. Скорость воздушных потоков достигает 300-400 км/ч. В стратосфере содержится менее 20% воздуха атмосферы.

На высоте 55-80 км находится мезосфера (в этом слое температура воздуха с высотой уменьшается и вблизи верхней границы падает до –80 0 С), между 80-800 км расположенатермосфера , в составе которой преобладают гелий и водород (температура воздуха быстро растет с высотой и достигает 1000 0 С на высоте 800 км). Мезосфера и термосфера вместе образуют мощный слой, называемыйионосферой (область заряженных частиц – ионов и электронов).

Самая верхняя, сильно разреженная часть атмосферы (от 800 до 1200 км) составляет экзосферу . В ней преобладают газы в атомарном состоянии, температура повышается до 2000єС.

В жизни ГО атмосфера имеет огромное значение. Атмосфера оказывает благодатное воздействие на климат Земли, предохраняя ее от чрезмерного охлаждения и нагревания. Суточные колебания температуры на нашей планете без атмосферы достигли бы 200єС: днем +100єС и выше, ночью -100єС. В настоящее время средняя температура воздуха у поверхности Земли равна +14єС. Атмосфера не пропускает к Земле метеоры и жесткое излучение. Без атмосферы не было бы звука, полярных сияний облаков и осадков.

К климатообразующим процессам относятся теплооборот, влагооборот и циркуляция атмосферы.

Теплооборот в атмосфере. Теплооборот обеспечивает тепловой режим атмосферы и зависит от радиационного баланса, т.е. притоков теплоты, приходящих на земную поверхность (в форме лучистой энергии) и уходящих от нее (лучистая энергия, поглощенная Землей, преобразуется в тепловую).

Солнечная радиация – поток электромагнитного излучения, поступающий от Солнца. На верхней границе атмосферы интенсивность (плотность потока) солнечной радиации равна 8,3 Дж/(см 2 /мин). Количество теплоты, которое излучает 1 см 2 черной поверхности в 1 мин при перпендикулярном падении солнечных лучей, называется солнечной постоянной.

Количество солнечной радиации, получаемое Землей, зависит:

1. от расстояния между Землей и Солнцем. Ближе всего к Солнцу Земля в начале января, дальше всего в начале июля; разница между двумя этими расстояниями – 5 млн. км, вследствие чего Земля в первом случае получает на 3,4% больше, а во втором на 3,5% меньше радиации, чем при среднем расстоянии от Земли до Солнца (в начале апреля и в начале октября);

2. от угла падения солнечных лучей на земную поверхность, зависящего в свою очередь от географической широты, высоты солнца над горизонтом (меняющейся в течение суток и по временам года), характера рельефа земной поверхности;

3. от преобразования лучистой энергии в атмосфере (рассеяние, поглощение, отражение обратно в мировое пространство) и на поверхности земли. Среднее альбедо Земли – 43%.

Поглощается около 17% всей радиации; озон, кислород, азот поглощают в основном коротковолновые ультрафиолетовые лучи, водяной пар и углекислый газ – длинноволновую ифракрасную радиацию. Атмосфера рассеивает 28% радиации; к земной поверхности поступает 21%, в космос уходит 7%. Та часть радиации, которая поступает к земной поверхности от всего небесного свода, называется рассеянной радиацией . Сущность рассеяния заключается в том, что частица, поглощая электромагнитные волны, сама становится источником излучения света и излучает те же волны, которые на нее падают. Молекулы воздуха очень малы, по размерам сопоставимы с длиной волн голубой части спектра. В чистом воздухе преобладает молекулярное рассеивание, следовательно, цвет неба – голубой. При запыленном воздухе цвет неба становится белесым. Цвет неба зависит от содержания примесей в атмосфере. При большом содержании водяного пара, рассеивающего красные лучи небо приобретает красноватый оттенок. С рассеянной радиацией связаны явления сумерек, белых ночей, т.к. после захода Солнца за горизонт верхние слои атмосферы еще продолжают освещаться.

Верхняя граница облаков отражает около 24% радиации. Следовательно, к земной поверхности в виде потока лучей подходит около 31% всей солнечной радиации, поступившей на верхнюю границу атмосферы, она называется прямой радиацией . Сумма прямой и рассеянной радиации (52%) называется суммарной радиацией. Соотношение между прямой и рассеянной радиацией меняется в зависимости от облачности, запыленности атмосферы и высоты Солнца. Распределение суммарной солнечной радиации по земной поверхности зонально. Наибольшая суммарная солнечная радиация 840-920 кДж/см 2 в год наблюдается в тропических широтах Северного полушария, что объясняется небольшой облачностью и большой прозрачностью воздуха. На экваторе суммарная радиация снижается до 580-670 кДж/см 2 в год из-за большой облачности и уменьшения прозрачности из-за большой влажности. В умеренных широтах величина суммарной радиации составляет 330-500 кДж/см 2 в год, в полярных широтах – 250 кДж/см 2 в год, причем в Антарктиде из-за большой высоты материка и небольшой влажности воздуха она немного больше.

Суммарная солнечная радиация, поступившая на земную поверхность, частично отражается обратно. Отношение отраженной радиации к суммарной, выраженное в процентах, называется альбедо. Альбедо характеризует отражательную способность поверхности и зависит от ее цвета, влажности и других свойств.

Наибольшей отражательной способностью обладает свежевыпавший снег – до 90%. Альбедо песков 30-35%, травы – 20%, лиственного леса – 16-27%, хвойного – 6-19%; сухой чернозем имеет альбедо 14%, влажный – 8%. Альбедо Земли как планеты принимают равным 35%.

Поглощая радиацию, Земля сама становится источником излучения. Тепловое излучение Земли – земная радиация – является длинноволновым, т.к. длина волны зависит от температуры: чем выше температура излучающего тела, тем короче длина волны испускаемых им лучей. Излучение земной поверхности нагревает атмосферу и она сама начинает излучать радиацию в мировое пространство (встречное излучение атмосферы ) и к земной поверхности. Встречное излучение атмосферы тоже длинноволновое. В атмосфере встречаются два потока длинноволновой радиации – излучение поверхности (земная радиация) и излучение атмосферы. Разность между ними, определяющая фактическую потерю теплоты земной поверхностью, называетсяэффективным излучением , оно направлено в Космос, т.к. земное излучение больше. Эффективное излучение больше днем и летом, т.к. зависит от нагрева поверхности. Эффективное излучение зависит от влажности воздуха: чем больше в воздухе водяных паров или капелек воды, тем излучение меньше (поэтому зимой в пасмурную погоду всегда теплее, чем в ясную). В целом для Земли эффективное излучение равно 190 кДж/см 2 в год (наибольшее в тропических пустынях – 380, наименьшее в полярных широтах – 85 кДж/см 2 в год).

Земля одновременно получает радиацию и отдает ее. Разность между получаемой и расходуемой радиацией называется радиационным балансом, или остаточной радиацией. Приход радиационного баланса поверхности составляет суммарная радиация (Q) и встречное излучение атмосферы. Расход – отраженная радиация (R k) и земное излучение. Разность между земным излучением и встречным излучением атмосферы – эффективное излучение (Е эф) имеет знак минус и является частью расхода в радиационном балансе:

R б =Q-E эф -R k

Радиационный баланс распределяется зонально: уменьшается от экватора к полюсам. Наибольший радиационный баланс свойственен экваториальным широтам и составляет 330-420 кДж/см 2 в год, в тропических широтах он снижается до 250-290 кДж/см 2 в год (объясняется возрастанием эффективного излучения), в умеренных широтах радиационный баланс уменьшается до 210-85 кДж/см 2 в год, в полярных широтах его величина приближается к нулю. Общая особенность радиационного баланса в том, что над океанами на всех широтах радиационный баланс выше на 40-85 кДж/см 2 , т.к. альбедо воды и эффективное излучение океана меньше.

Приходную часть радиационного баланса атмосферы (R б) составляют эффективное излучение (Е эф) и поглощенная солнечная радиация (R п), расходная часть определяется атмосферной радиацией, уходящей в космос (Е а):

R б = Е эф - Е а +R п

Радиационный баланс атмосферы отрицательный, а поверхности – положительный. Суммарный радиационный баланс атмосферы и земной поверхности равен нулю, т.е. Земля находится в состоянии лучистого равновесия.

Тепловой баланс – алгебраическая сумма потоков теплоты, приходящих на земную поверхность в виде радиационного баланса и уходящих от нее. Он складывается из теплового баланса поверхности и атмосферы. В приходной части теплового баланса земной поверхности стоит радиационный баланс, в расходной – затраты теплоты на испарение, на нагрев атмосферы от Земли, на нагрев почв. Расходуется теплота также на фотосинтез. Почвообразование, но эти затраты не превышают 1%. Следует отметить, что над океанами больше затраты теплоты на испарение, в тропических широтах – на нагрев атмосферы.

В тепловом балансе атмосферы приходную часть составляет теплота, выделившаяся при конденсации водяных паров, и переданная от поверхности в атмосферу; расход складывается из отрицательного радиационного баланса. Тепловой баланс земной поверхности и атмосферы равен нулю, т.е. Земля находится в состоянии теплового равновесия.

Тепловой режим земной поверхности.

Непосредственно солнечными лучами нагревается земная поверхность, а уже от нее – атмосфера. Поверхность получающая и отдающая теплоту, называется деятельной поверхностью . В температурном режиме поверхности выделяется суточный и годовой ход температур.Суточный ход температур поверхности изменение температуры поверхности в течение суток. Суточный ход температур поверхности суши (сухой и лишенной растительности) характеризуется одним максимумом около 13 ч и одним минимумом – перед восходом Солнца. Дневные максимумы температуры поверхности суши могут достигать 80 0 С в субтропиках и около 60 0 С в умеренных широтах.

Разница между максимальной и минимальной суточной температурой поверхности называется суточной амплитудой температуры. Суточная амплитуда температуры может летом достигать 40 0 С, зимой амплитуда суточных температур наименьшая – до 10 0 С.

Годовой ход температуры поверхности – изменение среднемесячной температуры поверхности в течение года, обусловлен ходом солнечной радиации и зависит от широты места. В умеренных широтах максимум температур поверхности суши наблюдается в июле, минимум – в январе; на океане максимумы и минимумы запаздывают на месяц.

Годовая амплитуда температур поверхности равна разнице между максимальными и минимальными среднемесячными температурами; возрастает с увеличением широты места, что объясняется возрастанием колебаний величины солнечной радиации. Наибольших значений годовая амплитуда температур достигает на континентах; на океанах и морских берегах значительно меньше. Самая маленькая годовая амплитуда температур отмечается в экваториальных широтах (2-3 0), самая большая – в субарктических широтах на материках (более 60 0).

Тепловой режим атмосферы. Атмосферный воздух незначительно нагревается непосредственно солнечными лучами. Т.к. воздушная оболочка свободно пропускает солнечные лучи.Атмосфера нагревается от подстилающей поверхности. Теплота в атмосферу передается конвекцией, адвекцией и конденсацией водяного пара. Слои воздуха, нагреваясь от почвы, становятся более легкими и поднимаются вверх, а более холодный, следовательно, более тяжелый воздух опускается вниз. В результате тепловойконвекции идет прогревание высоких слоев воздуха. Второй процесс передачи теплоты –адвекция – горизонтальный перенос воздуха. Роль адвекции заключается в передаче теплоты из низких в высокие широты, в зимний сезон тепло передается от океанов к материкам.Конденсация водяного пара – важный процесс, осуществляющий передачу теплоты высоким слоям атмосферы – при испарении теплота забирается от испаряющей поверхности, при конденсации в атмосфере эта теплота выделяется.

С высотой температура убывает. Изменение температуры воздуха на единицу расстояния называется вертикальным температурным градиентом, в среднем он равен 0,6 0 на 100 м. Вместе с тем ход этого убывания в разных слоях тропосферы разный: 0,3-0,4 0 до высоты 1,5 км; 0,5-0,6 – между высотами 1,5-6 км; 0,65-0,75 – от 6 до 9 км и 0,5-0,2 – от 9 до 12 км. В приземном слое (толщиной 2 м) градиенты, при пересчете на 100 м, исчисляются сотнями градусов. В поднимающемся воздухе температура изменяется адиабатически.Адиабатический процесс – процесс изменения температуры воздуха при его вертикальном движении без теплообмена с окружающей средой (в одной массе, без обмена теплом с другими средами).

В описанном распределении температуры по вертикали нередко наблюдаются исключения. Бывает, что верхние слои воздуха теплее нижних, прилегающих к земле. Явление это называется температурной инверсией (увеличение температуры с высотой). Чаще всего инверсия является следствием сильного охлаждения приземного слоя воздуха, вызванного сильным охлаждением земной поверхности в ясные тихие ночи, преимущественно зимой. При пересеченном рельефе холодные массы воздуха медленно стекают вдоль склонов и застаиваются в котловинах, впадинах и т.п. Инверсии могут образовываться и при движении воздушных масс из теплых областей в холодные, так как при натекании подогретого воздуха на холодную подстилающую поверхность его нижние слои заметно охлаждаются (инверсия сжатия).

Суточный и годовой ход температуры воздуха.

Суточным ходом температуры воздуха называется изменение температуры воздуха в течение суток – в общем отражает ход температуры земной поверхности, но моменты наступления максимумов и минимумов несколько запаздывают, максимум наступает в 14 часов, минимум после восхода солнца.

Суточная амплитуда температуры воздуха (разница между максимальной и минимальной температурами воздуха в течение суток) выше на суше, чем над океаном; уменьшается при движении в высокие широты (наибольшая в тропических пустынях – до 40 0 С) и возрастает в местах с оголенной почвой. Величина суточной амплитуды температуры воздуха – это один из показателей континентальности климата. В пустынях она намного больше, чем в районах с морским климатом.

Годовой ход температуры воздуха (изменение среднемесячной температуры в течение года) определяется прежде всего широтой места.Годовая амплитуда температуры воздуха - разница между максимальной и минимальной среднемесячными температурами.

Географическое распределение температуры воздуха показывают с помощью изотерм – линий, соединяющих на карте точки с одинаковыми температурами. Распределение температуры воздуха зонально, годовые изотермы в целом имеют субширотное простирание и соответствуют годовому распределению радиационного баланса.

В среднем за год самой теплой параллелью является 10 0 с.ш. с температурой 27 0 С – этотермический экватор . Летом термический экватор смещается до 20 0 с.ш., зимой – приближается к экватору на 5 0 с.ш. Смещение термического экватора в СП объясняется тем, что в СП площадь суши, расположенная в низких широтах, больше по сравнению с ЮП, а она в течение года имеет более высокие температуры.

Климатообразующие факторы . Вы уже знаете, что на формирование климата любой территории оказывают влияние следующие факторы: географическое положение, солнечная радиация, циркуляция воздушных масс, подстилающая поверхность, близость морей и океанов, морские течения, высота места над уровнем моря, направление горных цепей и хребтов, антропогенные воздействия. Все эти климатообразующие факторы действуют и на территории нашей страны, формируя своеобразные климатические условия того или иного места (региона).

Основные климатические показатели - количество тепла, количество осадков и распределение их по сезонам года, испаряемость, коэффициент увлажнения.

Какие же климатообразующие факторы играют ведущую роль в формировании климата нашей страны?

Рис. 28. Высота Солнца над горизонтом в день летнего солнцестояния: а - мыс Челюскин; б - г. Краснодар

Влияние географического положения на климат . Большая протяженность России с севера на юг определяет положение страны в разных климатических поясах, обусловливает разное количество солнечного тепла, получаемое той или иной территорией.

Излучение солнцем тепла и света называется солнечной радиацией . Радиация измеряется количеством тепла и выражается в килокалориях на один квадратный сантиметр (ккал/см 2) земной поверхности.

Количество солнечной радиации, которую получает земная поверхность, зависит от географической широты места, так как широта определяет угол падения солнечных лучей, от состояния атмосферы, а также от характера подстилающей поверхности.

Наибольшее количество солнечной радиации поступает на поверхность в южных районах нашей страны, поэтому именно там наблюдаются самые высокие температуры воздуха.

Рис. 29. Распределение солнечной радиации

По рисунку 29 расскажите, как распределяется поступающая ни земиую поверхность солнечная радиация. Что мешает поступлению солнечной радиации на поверхность Земли? Объясните, как распределяется количество солнечной радиации в зависимости от географической широты места.


Рис. 30. Количество солнечного тепла в зависимости от высоты солнца над горизонтом (А 1 - высокое. А 2 - низкое)

Общее количество солнечной энергии, достигающей поверхности Земли, называется суммарной радиацией .

Нагретая земная поверхность излучает тепло. Чем выше температура поверхности и чем меньше облачность, тем больше потери тепловой энергии. Например, в умеренных широтах на тепловое излучение расходуется в среднем около половины энергии, затраченной на нагревание поверхности.

Характер подстилающей поверхности сильно влияет на отражение или поглощение радиации. Снег в среднем отражает до 70-80% суммарной солнечной радиации, песок в два раза меньше, чем снег, лес и чернозем примерно в пять раз меньше.

Циркуляция воздушных масс . Перемещение воздушных масс над поверхностью Земли приводит к переносу тепла и влаги из одних районов в другие.

Вспомните из курса географии материков и океанов, как называются основные воздушные массы. Какие воздушные массы могут действовать в умеренных широтах?

Над Россией перемещаются арктические, умеренные и на юге тропические воздушные массы. В основном это континентальный воздух.


Рис. 31. Суммарная солнечная радиация

Внимательно изучите карту (рис. 31) и расскажите, какие воздушные массы преобладают над европейской частью России и в Сибири зимой, а какие - летом.

Поскольку в умеренных широтах, где расположена большая часть нашей страны, господствует западный перенос воздушных масс, Атлантический океан оказывает на климат значительно большее влияние по сравнению с Тихим.

Роль западного переноса особенно велика в теплый период года, когда на большей части страны преобладают западные и северо-западные ветры.

Зимой основную роль играет обширная область высокого давления, называемая Сибирским антициклоном или Азиатским максимумом, центр которого располагается в районах Забайкалья, Республики Тува и Северной Монголии. От него области с повышенным давлением растекаются в двух направлениях: на северо-восток вплоть до Чукотского побережья и на запад через Северный Казахстан и юг Русской равнины (примерно до 50° с. ш.).


Рис. 32. Атмосферные фронты над территорией России

Перемещение различных по температуре и влажности воздушных масс определяет характер погоды. Например, континентальный воздух умеренных широт (кВУШ) круглый год преобладает в западных районах Восточной Сибири. Поэтому зимой здесь ясная морозная погода (сибирская зима), а летом достаточно тепло.

Важно представлять, что при перемещении воздушных масс над той или иной территорией они способны постепенно изменять свои свойства под влиянием подстилающей поверхности. Этот процесс называется трансформацией. Например, арктические воздушные массы, проходя летом через всю Русскую равнину, прогреваются до такой степени, что приводят к образованию суховеев в Предкавказье.


Рис. 33. Движение воздуха в холодном и теплом фронтах

В полосе, разделяющей различные по своим свойствам воздушные массы, образуются своеобразные переходные зоны - атмосферные фронты .

По карте (рис. 32) определите, какие атмосферные фронты проходят над территорией России.

Ширина атмосферного фронта обычно достигает нескольких десятков километров. В полосе фронта при соприкосновении двух различных по свойствам воздушных масс происходит достаточно быстрое изменение давления, температуры, влажности. Поэтому прохождение фронта сопровождается ветрами, облачностью, выпадением осадков, то есть сменой погоды.

При перемещении теплых воздушных масс в сторону холодных образуется теплый фронт, а при перемещении холодных воздушных масс в сторону теплых - холодный.

При вторжении теплого воздуха он, как более легкий, поднимается над холодным. При подъеме он охлаждается, поэтому содержащаяся в нем влага конденсируется, что и вызывает выпадение осадков. Погода изменяется таким образом: наступает потепление, идут затяжные дожди.

При вторжении холодного воздуха он, как более тяжелый, подтекает под теплый, выталкивая его вверх. Теплый воздух быстро охлаждается, вслед за чем выпадают обильные осадки - ливни, часто с грозами. После этого быстро проясняется и наступает ясная, прохладная погода.

Циклоны и антициклоны - это крупные атмосферные вихри. Циклоны - это вихри с низким давлением в центре, антициклоны - с высоким давлением в центре.

На синоптических и климатических картах обнаружить циклоны и антициклоны достаточно легко по замкнутым концентрическим изобарам (линиям равного давления).

Циклоны имеют весьма внушительные размеры - 2-3 тыс. км в поперечнике и перемещаются со скоростью около 30 км/ч. Воздух в циклоне движется от периферии к центру, отклоняясь против часовой стрелки. В центре воздух поднимается и растекается к окраинам. При этом происходит конденсация влаги и выпадают осадки.

По территории России циклоны обычно перемещаются с запада на восток, поскольку в умеренных широтах господствует западный перенос.


Рис. 34. Направление ветров в антициклоне и циклоне в Северном полушарии (НД - область низкого давления, ВД - область высокого давления)

В антициклоне происходит движение воздуха от центра к периферии с отклонением по часовой стрелке. В центр антициклона постоянно поступает воздух из верхних слоев тропосферы. При опускании этот воздух прогревается и удаляется от насыщения. Поэтому в антициклоне погода стоит ясная, безоблачная, с большими суточными колебаниями температуры.

Сопоставьте климатическую и физическую карты России и приведите примеры влияния рельефа на климат.

Основные районы действия циклонов связаны с прохождением атмосферных фронтов. Поэтому интенсивная циклоническая деятельность зимой развивается над Баренцевым, Карским, Охотским морями и над северо-западной частью Русской равнины.

В летний период циклоны наиболее интенсивно развиваются на Дальнем Востоке и на западе Русской равнины.

Антициклоны активно действуют зимой в Восточной Сибири, а также как зимой, так и летом на юге Русской равнины.

Влияние подстилающей поверхности . Большое влияние на климат оказывает рельеф. Отсутствие гор на севере и западе России способствует проникновению арктических и атлантических воздушных масс в глубь страны. Горные хребты на востоке страны ограничивают влияние Тихого океана на климат внутренних районов.

В зависимости от того, где образуются воздушные массы, они разделяются на морские и континентальные.

Характер поверхности влияет и на величину поступающей радиации, препятствуя таким образом глубокому прогреванию поверхности.

Вопросы и задания

  1. Какие климатообразующие факторы оказывают влияние на климат нашей страны?
  2. Что такое суммарная радиация? От пего она зависит?
  3. Что такое трансформация воздушных масс?
  4. Какие атмосферные фронты действуют на территории России? Как они проходят зимой и летом?
  5. Чем отличается циклон от антициклона? Для каких районов страны характерна циклоническая, для каких антициклоническая погода?
  6. Какие факторы имеют наибольшее значение в формировании климата вашей местности?

1. Что называется солнечной радиацией? В каких единицах она измеряется? От чего зависит её величина?

Вся совокупность лучистой энергии, посылаемой Солнцем, называется солнечной радиацией, обычно она выражается в калориях или джоулях на один квадратный сантиметр в минуту. Солнечная радиация распределяется по земле неравномерно. Это зависит:

От плотности и влажности воздуха – чем они выше, тем меньше радиации получает земная поверхность;

От географической широты местности – количество радиации увеличивается от полюсов к экватору. Количество прямой солнечной радиации зависит от длины пути, который проходят солнечные лучи в атмосфере. Когда Солнце находится в зените (угол падения лучей 90°), его лучи попадают на Землю кратчайшим путем и интенсивно отдают свою энергию малой площади;

От годового и суточного движения Земли – в средних и высоких широтах поступление солнечной радиации сильно изменяется по временам года, что связано с изменением полуденной высоты Солнца и продолжительности дня;

От характера земной поверхности – чем светлее поверхность, тем больше солнечных лучей она отражает.

2. На какие виды разделяют солнечную радиацию?

Существуют следующие виды Солнечной радиации: радиация, достигающая земной поверхности, состоит из прямой и рассеянной. Радиация, приходящая на Землю непосредственно от Солнца в виде прямых солнечных лучей при безоблачном небе, называется прямой. Она несет наибольшее количество тепла и света. Если бы у нашей планеты не было атмосферы, земная поверхность получала только прямую радиацию. Однако, проходя через атмосферу, примерно четвертая часть солнечной радиации рассеивается молекулами газов и примесями, отклоняется от прямого пути. Некоторая их часть достигает поверхности Земли, образуя рассеянную солнечную радиацию. Благодаря рассеянной радиации свет проникает и в те места, куда прямые солнечные лучи (прямая радиация) не проникают. Эта радиация создает дневной свет и придает цвет небу.

3. Почему меняется поступление солнечной радиации по сезонам года?

Россия, в своем большинстве, расположена в умеренных широтах, лежащих между тропиком и полярным кругом, в этих широтах Солнце каждый день восходит и заходит, но никогда не бывает в зените. Благодаря тому, что угол наклона Земли не изменен в течение всего её обращения вокруг Солнца, в разные сезоны количество приходящего тепла, в умеренных широтах, различно и зависит от угла Солнца над горизонтом. Так, на широте 450 mах угол падения солнечных лучей (22 июня) составляет приблизительно 680, а min (22 декабря) приблизительно 220. Чем меньше угол падения лучей Солнца, тем меньше тепла они приносят, поэтому отмечаются существенные сезонные различия получаемой солнечной радиации в разные сезоны года: зимы, весны, лета, осени.

4. Для чего необходимо знать высоту Солнца над горизонтом?

Высота Солнца над горизонтом определяет количество тепла приходящего на Землю, поэтому между углом падения солнечных лучей и количеством солнечной радиации, приходящей на земную поверхность, существует прямая зависимость. От экватора к полюсам в целом наблюдается уменьшение угла падения солнечных лучей, и как следствие от экватора к полюсам уменьшается величина солнечной радиации. Таким образом, зная высоту Солнца над горизонтом, можно узнать количество тепла приходящего на земную поверхность.

5. Выберите верный ответ. Общее количество радиации, достигшей поверхности Земли, называется: а) поглощённой радиацией; б) суммарной солнечной радиацией; в) рассеянной радиацией.

6. Выберите верный ответ. При движении к экватору величина суммарной солнечной радиации: а) увеличивается; б) уменьшается; в) не изменяется.

7. Выберите верный ответ. Самый большой показатель отражённой радиации имеет: а) снег; б) чернозём; в) песок; г) вода.

8. Как вы думаете, можно ли в летний пасмурный день загореть?

Суммарная солнечная радиация состоит из двух составляющих: рассеянной и прямой. При этом Солнечные лучи, независимости от своей природы несут в себе ультрафиолет, который и влияет на загар.

9. По карте на рисунке 36 определите суммарную солнечную радиацию для десяти городов России. Какой вывод вы сделали?

Суммарная радиация в разных городах России:

Мурманск: 10 ккал/см2 в год;

Архангельск: 30 ккал/см2 в год;

Москва: 40 ккал/см2 в год;

Пермь: 40 ккал/см2 в год;

Казань: 40 ккал/см2 в год;

Челябинск: 40 ккал/см2 в год;

Саратов: 50 ккал/см2 в год;

Волгоград: 50 ккал/см2 в год;

Астрахань: 50 ккал/см2 в год;

Ростов-на-Дону: более 50 ккал/см2 в год;

Общая закономерность в распределении солнечной радиации такова: чем ближе объект (город) к полюсу, тем меньше солнечной радиации приходиться на него (город).

10. Опишите, чем различаются сезоны года в вашей местности (природные условия, жизнь людей, их занятия). В какой из сезонов года жизнь наиболее активна?

Сложный рельеф, большая протяженность с севера на юг позволяют в области выделить 3 зоны, различающиеся как по рельефу, так и по климатическим характеристикам: горно-лесная, лесостепная и степная. Климат горно-лесной зоны прохладный и влажный. Температурный режим меняется в зависимости от рельефа. Этой зоне характерно короткое прохладное лето и продолжительная снежная зима. Постоянный снежный покров образуется в период с 25 октября по 5 ноября и залегает он до конца апреля, а в отдельные годы снежный покров сохраняется до 10-15 мая. Самым холодным месяцем является январь. Средняя температура зимой минус 15-16° С, абсолютный минимум 44-48° С. Самый теплый месяц - июль со средней температурой воздуха плюс 15-17° С, абсолютный максимум температуры воздуха за лето в этом районе достигал плюс 37-38° С. Климат лесостепной зоны теплый, с достаточно холодной и снежной зимой. Средняя температура января равняется минус 15,5-17,5° С, абсолютный минимум температуры воздуха достигал минус 42-49° С. Средняя температура воздуха в июле равняется плюс 18-19° С. Абсолютный максимум температуры - плюс 42,0° С. Климат степной зоны очень теплый и засушливый. Зима здесь холодная, с сильными морозами, метелями, которые наблюдаются в течение 40-50 дней, вызывая сильный перенос снега. Средняя температура января минус 17-18° С. В суровые зимы минимальная температура воздуха опускается до минус 44-46° С.

Просмотров