Rezolvați funcția trigonometrică. Ecuații trigonometrice. Cum se rezolvă ecuații trigonometrice? Formule pentru produsul dintre sinusuri, cosinus și sinus cu cosinus

Necesită cunoașterea formulelor de bază ale trigonometriei - suma pătratelor sinusului și cosinusului, expresia tangentei prin sinus și cosinus și altele. Pentru cei care le-au uitat sau nu le cunosc, recomandam citirea articolului „”.
Așadar, cunoaștem formulele trigonometrice de bază, este timpul să le punem în practică. Rezolvarea ecuațiilor trigonometrice cu abordarea corectă, este o activitate destul de interesantă, cum ar fi, de exemplu, rezolvarea unui cub Rubik.

Pe baza numelui în sine, este clar că o ecuație trigonometrică este o ecuație în care necunoscutul se află sub semnul unei funcții trigonometrice.
Există așa-zise simple ecuații trigonometrice. Iată cum arată: sinх = a, cos x = a, tg x = a. Considera, cum se rezolvă astfel de ecuații trigonometrice, pentru claritate, vom folosi cercul trigonometric deja familiar.

sinx = a

cos x = a

tan x = a

pat x = a

Orice ecuație trigonometrică se rezolvă în două etape: aducem ecuația la cea mai simplă formă și apoi o rezolvăm ca cea mai simplă ecuație trigonometrică.
Există 7 metode principale prin care se rezolvă ecuațiile trigonometrice.

  1. Substituția variabilă și metoda substituției

  2. Rezolvați ecuația 2cos 2 (x + /6) - 3sin( /3 - x) +1 = 0

    Folosind formulele de reducere obținem:

    2cos 2 (x + /6) – 3cos(x + /6) +1 = 0

    Să înlocuim cos(x + /6) cu y pentru simplitate și să obținem ecuația pătratică obișnuită:

    2y 2 – 3y + 1 + 0

    Rădăcinile cărora y 1 = 1, y 2 = 1/2

    Acum să mergem înapoi

    Înlocuim valorile găsite ale lui y și obținem două răspunsuri:

  3. Rezolvarea ecuațiilor trigonometrice prin factorizare

  4. Cum se rezolvă ecuația sin x + cos x = 1?

    Să mutam totul la stânga, astfel încât 0 să rămână în dreapta:

    sin x + cos x - 1 = 0

    Folosim identitățile de mai sus pentru a simplifica ecuația:

    sin x - 2 sin 2 (x/2) = 0

    Să facem factorizarea:

    2sin(x/2) * cos(x/2) - 2 sin 2 (x/2) = 0

    2sin(x/2) * = 0

    Obținem două ecuații

  5. Reducerea la o ecuație omogenă

  6. O ecuație este omogenă față de sinus și cosinus dacă toți termenii ei față de sinus și cosinus sunt de același grad și același unghi. Pentru a rezolva o ecuație omogenă, procedați după cum urmează:

    a) transferă toți membrii săi în partea stângă;

    b) scoateți toți factorii comuni dintre paranteze;

    c) egalează toți factorii și parantezele la 0;

    d) între paranteze se obține o ecuație omogenă de grad mai mic care, la rândul ei, se împarte la un sinus sau cosinus într-un grad superior;

    e) rezolvați ecuația rezultată pentru tg.

    Rezolvați ecuația 3sin 2 x + 4 sin x cos x + 5 cos 2 x = 2

    Să folosim formula sin 2 x + cos 2 x = 1 și să scăpăm de cele două deschise din dreapta:

    3sin 2 x + 4 sin x cos x + 5 cos x = 2sin 2 x + 2 cos 2 x

    sin 2 x + 4 sin x cos x + 3 cos 2 x = 0

    Împărțiți la cosx:

    tg 2 x + 4 tg x + 3 = 0

    Înlocuim tg x cu y și obținem o ecuație pătratică:

    y 2 + 4y +3 = 0 ale căror rădăcini sunt y 1 =1, y 2 = 3

    De aici găsim două soluții la ecuația inițială:

    x 2 \u003d arctg 3 + k

  7. Rezolvarea ecuațiilor, prin trecerea la jumătate de unghi

  8. Rezolvați ecuația 3sin x - 5cos x = 7

    Să trecem la x/2:

    6sin(x/2) * cos(x/2) – 5cos 2 (x/2) + 5sin 2 (x/2) = 7sin 2 (x/2) + 7cos 2 (x/2)

    Mutând totul la stânga:

    2sin 2 (x/2) - 6sin(x/2) * cos(x/2) + 12cos 2 (x/2) = 0

    Împărțire la cos(x/2):

    tg 2 (x/2) – 3tg(x/2) + 6 = 0

  9. Introducerea unui unghi auxiliar

  10. Pentru a lua în considerare, să luăm o ecuație de forma: a sin x + b cos x \u003d c,

    unde a, b, c sunt niște coeficienți arbitrari și x este o necunoscută.

    Împărțiți ambele părți ale ecuației la:

    Acum coeficienții ecuației, conform formulelor trigonometrice, au proprietățile sin și cos și anume: modulul lor nu este mai mare de 1 și suma pătratelor = 1. Să-i notăm, respectiv, cos și sin, unde este așa-numitul unghi auxiliar. Atunci ecuația va lua forma:

    cos * sin x + sin * cos x \u003d C

    sau sin(x + ) = C

    Soluția pentru această ecuație trigonometrică simplă este

    x \u003d (-1) k * arcsin C - + k, unde

    Trebuie remarcat faptul că denumirile cos și sin sunt interschimbabile.

    Rezolvați ecuația sin 3x - cos 3x = 1

    În această ecuație, coeficienții sunt:

    a \u003d, b \u003d -1, deci împărțim ambele părți la \u003d 2

Lecție și prezentare pe tema: „Rezolvarea celor mai simple ecuații trigonometrice”

Materiale suplimentare
Dragi utilizatori, nu uitați să lăsați comentariile, feedback-ul, sugestiile voastre! Toate materialele sunt verificate de un program antivirus.

Manuale si simulatoare in magazinul online „Integral” pentru nota 10 din 1C
Rezolvăm probleme de geometrie. Sarcini interactive pentru construirea în spațiu
Mediul software „1C: constructor matematic 6.1”

Ce vom studia:
1. Ce sunt ecuațiile trigonometrice?

3. Două metode principale de rezolvare a ecuațiilor trigonometrice.
4. Ecuații trigonometrice omogene.
5. Exemple.

Ce sunt ecuațiile trigonometrice?

Băieți, am studiat deja arcsinus, arccosinus, arctangent și arccotangent. Acum să ne uităm la ecuațiile trigonometrice în general.

Ecuații trigonometrice - ecuații în care variabila este conținută sub semnul funcției trigonometrice.

Repetăm ​​forma rezolvării celor mai simple ecuații trigonometrice:

1) Dacă |а|≤ 1, atunci ecuația cos(x) = a are o soluție:

X= ± arccos(a) + 2πk

2) Dacă |а|≤ 1, atunci ecuația sin(x) = a are o soluție:

3) Dacă |a| > 1, atunci ecuația sin(x) = a și cos(x) = a nu au soluții 4) Ecuația tg(x)=a are o soluție: x=arctg(a)+ πk

5) Ecuația ctg(x)=a are o soluție: x=arcctg(a)+ πk

Pentru toate formulele, k este un număr întreg

Cele mai simple ecuații trigonometrice au forma: Т(kx+m)=a, T- orice funcție trigonometrică.

Exemplu.

Rezolvați ecuațiile: a) sin(3x)= √3/2

Soluţie:

A) Să notăm 3x=t, apoi ne vom rescrie ecuația sub forma:

Soluția acestei ecuații va fi: t=((-1)^n)arcsin(√3/2)+ πn.

Din tabelul de valori obținem: t=((-1)^n)×π/3+ πn.

Să revenim la variabila noastră: 3x =((-1)^n)×π/3+ πn,

Atunci x= ((-1)^n)×π/9+ πn/3

Răspuns: x= ((-1)^n)×π/9+ πn/3, unde n este un număr întreg. (-1)^n - minus unu la puterea lui n.

Mai multe exemple de ecuații trigonometrice.

Rezolvați ecuațiile: a) cos(x/5)=1 b)tg(3x- π/3)= √3

Soluţie:

A) De data aceasta vom trece direct la calculul rădăcinilor ecuației:

X/5= ± arccos(1) + 2πk. Atunci x/5= πk => x=5πk

Răspuns: x=5πk, unde k este un număr întreg.

B) Scriem sub forma: 3x- π/3=arctg(√3)+ πk. Știm că: arctg(√3)= π/3

3x- π/3= π/3+ πk => 3x=2π/3 + πk => x=2π/9 + πk/3

Răspuns: x=2π/9 + πk/3, unde k este un număr întreg.

Rezolvați ecuații: cos(4x)= √2/2. Și găsiți toate rădăcinile de pe segment.

Soluţie:

Să rezolvăm ecuația noastră în formă generală: 4x= ± arccos(√2/2) + 2πk

4x= ± π/4 + 2πk;

X= ± π/16+ πk/2;

Acum să vedem ce rădăcini cad pe segmentul nostru. Pentru k Pentru k=0, x= π/16, suntem în segmentul dat .
Cu k=1, x= π/16+ π/2=9π/16, au lovit din nou.
Pentru k=2, x= π/16+ π=17π/16, dar aici nu am lovit, ceea ce înseamnă că nu vom lovi nici pentru k mare.

Răspuns: x= π/16, x= 9π/16

Două metode principale de soluție.

Am luat în considerare cele mai simple ecuații trigonometrice, dar există și altele mai complexe. Pentru rezolvarea acestora se utilizează metoda introducerii unei noi variabile și metoda factorizării. Să ne uităm la exemple.

Să rezolvăm ecuația:

Soluţie:
Pentru a ne rezolva ecuația, folosim metoda introducerii unei noi variabile, notată: t=tg(x).

Ca rezultat al înlocuirii, obținem: t 2 + 2t -1 = 0

Aflați rădăcinile ecuației pătratice: t=-1 și t=1/3

Atunci tg(x)=-1 și tg(x)=1/3, am obținut cea mai simplă ecuație trigonometrică, să-i găsim rădăcinile.

X=arctg(-1) +πk= -π/4+πk; x=arctg(1/3) + πk.

Răspuns: x= -π/4+πk; x=arctg(1/3) + πk.

Un exemplu de rezolvare a unei ecuații

Rezolvați ecuații: 2sin 2 (x) + 3 cos(x) = 0

Soluţie:

Să folosim identitatea: sin 2 (x) + cos 2 (x)=1

Ecuația noastră devine: 2-2cos 2 (x) + 3 cos (x) = 0

2 cos 2 (x) - 3 cos(x) -2 = 0

Să introducem înlocuirea t=cos(x): 2t 2 -3t - 2 = 0

Soluția ecuației noastre pătratice sunt rădăcinile: t=2 și t=-1/2

Atunci cos(x)=2 și cos(x)=-1/2.

pentru că Cosinusul nu poate lua valori mai mari de unu, atunci cos(x)=2 nu are rădăcini.

Pentru cos(x)=-1/2: x= ± arccos(-1/2) + 2πk; x= ±2π/3 + 2πk

Răspuns: x= ±2π/3 + 2πk

Ecuații trigonometrice omogene.

Definiție: O ecuație de forma a sin(x)+b cos(x) se numește ecuații trigonometrice omogene de gradul I.

Ecuații de formă

ecuații trigonometrice omogene de gradul doi.

Pentru a rezolva o ecuație trigonometrică omogenă de gradul întâi, o împărțim la cos(x): Este imposibil să împărțiți la cosinus dacă este egal cu zero, să ne asigurăm că nu este așa:
Fie cos(x)=0, apoi asin(x)+0=0 => sin(x)=0, dar sinusul și cosinusul nu sunt egale cu zero în același timp, avem o contradicție, deci putem împărți în siguranță cu zero.

Rezolvați ecuația:
Exemplu: cos 2 (x) + sin(x) cos(x) = 0

Soluţie:

Scoateți factorul comun: cos(x)(c0s(x) + sin (x)) = 0

Atunci trebuie să rezolvăm două ecuații:

cos(x)=0 și cos(x)+sin(x)=0

Cos(x)=0 pentru x= π/2 + πk;

Luați în considerare ecuația cos(x)+sin(x)=0 Împărțiți ecuația noastră la cos(x):

1+tg(x)=0 => tg(x)=-1 => x=arctg(-1) +πk= -π/4+πk

Răspuns: x= π/2 + πk și x= -π/4+πk

Cum se rezolvă ecuații trigonometrice omogene de gradul doi?
Băieți, respectați întotdeauna aceste reguli!

1. Vedeți cu ce este egal coeficientul a, dacă a \u003d 0, atunci ecuația noastră va lua forma cos (x) (bsin (x) + ccos (x)), un exemplu al cărei soluție este în precedenta diapozitiv

2. Dacă a≠0, atunci trebuie să împărțiți ambele părți ale ecuației la cosinusul pătrat, obținem:


Facem schimbarea variabilei t=tg(x) obținem ecuația:

Rezolvați Exemplul #:3

Rezolvați ecuația:
Soluţie:

Împărțiți ambele părți ale ecuației la pătratul cosinus:

Facem o schimbare a variabilei t=tg(x): t 2 + 2 t - 3 = 0

Aflați rădăcinile ecuației pătratice: t=-3 și t=1

Atunci: tg(x)=-3 => x=arctg(-3) + πk=-arctg(3) + πk

Tg(x)=1 => x= π/4+ πk

Răspuns: x=-arctg(3) + πk și x= π/4+ πk

Rezolvați Exemplul #:4

Rezolvați ecuația:

Soluţie:
Să ne transformăm expresia:


Putem rezolva astfel de ecuații: x= - π/4 + 2πk și x=5π/4 + 2πk

Răspuns: x= - π/4 + 2πk și x=5π/4 + 2πk

Rezolvați Exemplul #:5

Rezolvați ecuația:

Soluţie:
Să ne transformăm expresia:


Introducem înlocuirea tg(2x)=t:2 2 - 5t + 2 = 0

Soluția ecuației noastre pătratice va fi rădăcinile: t=-2 și t=1/2

Atunci obținem: tg(2x)=-2 și tg(2x)=1/2
2x=-arctg(2)+ πk => x=-arctg(2)/2 + πk/2

2x= arctg(1/2) + πk => x=arctg(1/2)/2+ πk/2

Răspuns: x=-arctg(2)/2 + πk/2 și x=arctg(1/2)/2+ πk/2

Sarcini pentru soluție independentă.

1) Rezolvați ecuația

A) sin(7x)= 1/2 b) cos(3x)= √3/2 c) cos(-x) = -1 d) tg(4x) = √3 e) ctg(0,5x) = -1,7

2) Rezolvați ecuațiile: sin(3x)= √3/2. Și găsiți toate rădăcinile de pe segmentul [π/2; π].

3) Rezolvați ecuația: ctg 2 (x) + 2ctg(x) + 1 =0

4) Rezolvați ecuația: 3 sin 2 (x) + √3sin (x) cos(x) = 0

5) Rezolvați ecuația: 3sin 2 (3x) + 10 sin(3x)cos(3x) + 3 cos 2 (3x) =0

6) Rezolvați ecuația: cos 2 (2x) -1 - cos(x) =√3/2 -sin 2 (2x)

Ecuații trigonometrice .

Cele mai simple ecuații trigonometrice .

Metode de rezolvare a ecuațiilor trigonometrice.

Ecuații trigonometrice. O ecuație care conține o necunoscută sub semnul funcției trigonometrice se numește trigonometric.

Cele mai simple ecuații trigonometrice.



Metode de rezolvare a ecuațiilor trigonometrice. Rezolvarea ecuației trigonometrice constă în două etape: transformarea ecuației să fie simplu tip (vezi mai sus) și soluţieobtinut cel mai simplu ecuație trigonometrică. Sunt șapte metode de bază pentru rezolvarea ecuațiilor trigonometrice.

1. Metoda algebrică. Această metodă ne este bine cunoscută din algebră

(metoda de substituție și substituție variabilă).

2. Factorizarea. Să ne uităm la această metodă cu exemple.

EXEMPLU 1. Rezolvați ecuația: păcat X+ cos X = 1 .

Soluție. Mută ​​toți termenii ecuației la stânga:

Păcat X+ cos X – 1 = 0 ,

Să transformăm și să factorizăm expresia în

Partea stângă a ecuației:

Exemplul 2. Rezolvați ecuația: cos 2 X+ păcat X cos X = 1.

SOLUȚIA cos 2 X+ păcat X cos X păcatul 2 X– cos 2 X = 0 ,

Păcat X cos X– păcatul 2 X = 0 ,

Păcat X(cos X– păcat X ) = 0 ,

Exemplul 3. Rezolvați ecuația: cos 2 X– cos 8 X+ cos 6 X = 1.

SOLUȚIA cos 2 X+ cos 6 X= 1 + cos8 X,

2 cos 4 X cos 2 X= 2 cos² 4 X ,

Cos 4 X · (cos 2 X– cos 4 X) = 0 ,

Cos 4 X 2 păcatul 3 X păcat X = 0 ,

unu). cos 4 X= 0, 2). păcatul 3 X= 0, 3). păcat X = 0 ,

3.

Casting la ecuație uniformă. Ecuația numit omogen din relativ păcatȘi cos , dacă totul termeni de acelaşi grad cu privire la păcatȘi cos acelasi unghi. Pentru a rezolva o ecuație omogenă, aveți nevoie de:

dar) mutați toți membrii săi în partea stângă;

b) scoateți toți factorii comuni dintre paranteze;

în) egalează toți factorii și parantezele cu zero;

G) parantezele puse la zero dau ecuație omogenă de grad mai mic, care ar trebui împărțită la

cos(sau păcat) în gradul superior;

d) rezolvați ecuația algebrică rezultată în raport cubronzat .

EXEMPLU Rezolvați ecuația: 3 păcat 2 X+ 4 păcat X cos X+ 5 cos 2 X = 2.

Rezolvare: 3sin 2 X+ 4 păcat X cos X+ 5 cos 2 X= 2 sin 2 X+ 2 cos 2 X ,

Păcatul 2 X+ 4 păcat X cos X+ 3 cos 2 X = 0 ,

bronzat 2 X+ 4tan X + 3 = 0 , de aici y 2 + 4y +3 = 0 ,

Rădăcinile acestei ecuații sunt:y 1 = - 1, y 2 = - 3, prin urmare

1) bronzat X= –1, 2) tan X = –3,

4. Tranziție la jumătatea colțului. Să ne uităm la această metodă cu un exemplu:

EXEMPLU Rezolvați ecuația: 3 păcat X– 5cos X = 7.

Rezolvare: 6 sin ( X/ 2) cos ( X/ 2) – 5 cos² ( X/ 2) + 5 sin² ( X/ 2) =

7 sin² ( X/ 2) + 7 cos² ( X/ 2) ,

2 sin² ( X/ 2) – 6 sin ( X/ 2) cos ( X/ 2) + 12 cos² ( X/ 2) = 0 ,

bronz² ( X/ 2) – 3 bronz ( X/ 2) + 6 = 0 ,

. . . . . . . . . .

5. Introducerea unui unghi auxiliar. Luați în considerare o ecuație de formă:

A păcat X + b cos X = c ,

Unde A, b, c– coeficienți;X- necunoscut.

Acum coeficienții ecuației au proprietățile sinusului și cosinusului, și anume: modul (valoare absolută) al fiecăruia

Confidențialitatea dumneavoastră este importantă pentru noi. Din acest motiv, am dezvoltat o Politică de confidențialitate care descrie modul în care folosim și stocăm informațiile dumneavoastră. Vă rugăm să citiți politica noastră de confidențialitate și să ne spuneți dacă aveți întrebări.

Colectarea și utilizarea informațiilor personale

Informațiile personale se referă la date care pot fi folosite pentru a identifica o anumită persoană sau pentru a o contacta.

Vi se poate cere să furnizați informațiile dumneavoastră personale în orice moment când ne contactați.

Următoarele sunt câteva exemple de tipuri de informații personale pe care le putem colecta și modul în care putem folosi aceste informații.

Ce informații personale colectăm:

  • Când trimiteți o cerere pe site, este posibil să colectăm diverse informații, inclusiv numele, numărul de telefon, adresa dvs E-mail etc.

Cum folosim informațiile dumneavoastră personale:

  • Colectat de noi Informații personale ne permite să vă contactăm și să vă informăm despre oferte unice, promoții și alte evenimente și evenimente viitoare.
  • Din când în când, putem folosi informațiile dumneavoastră personale pentru a vă trimite notificări și mesaje importante.
  • De asemenea, putem folosi informații personale în scopuri interne, cum ar fi efectuarea de audituri, analize de date și diverse cercetări pentru a îmbunătăți serviciile pe care le oferim și pentru a vă oferi recomandări cu privire la serviciile noastre.
  • Dacă participați la o tragere la sorți, un concurs sau un stimulent similar, este posibil să folosim informațiile pe care le furnizați pentru a administra astfel de programe.

Dezvăluirea către terți

Nu dezvăluim informațiile primite de la dumneavoastră către terți.

Excepții:

  • În cazul în care este necesar - în conformitate cu legea, ordinea judiciară, în cadrul procedurilor judiciare și/sau în baza cererilor publice sau a solicitărilor din partea organelor de stat de pe teritoriul Federației Ruse - dezvăluiți informațiile dumneavoastră personale. De asemenea, putem dezvălui informații despre dumneavoastră dacă stabilim că o astfel de dezvăluire este necesară sau adecvată pentru securitate, aplicarea legii sau în alte scopuri de interes public.
  • În cazul unei reorganizări, fuziuni sau vânzări, putem transfera informațiile personale pe care le colectăm către succesorul terț relevant.

Protecția informațiilor personale

Luăm măsuri de precauție - inclusiv administrative, tehnice și fizice - pentru a vă proteja informațiile personale împotriva pierderii, furtului și utilizării greșite, precum și împotriva accesului, dezvăluirii, modificării și distrugerii neautorizate.

Menținerea confidențialității la nivel de companie

Pentru a ne asigura că informațiile dumneavoastră personale sunt în siguranță, comunicăm angajaților noștri practicile de confidențialitate și securitate și aplicăm strict practicile de confidențialitate.

Când rezolvi multe probleme de matematică, în special cele care apar înainte de clasa a 10-a, este clar definită ordinea acțiunilor efectuate care vor duce la obiectiv. Astfel de probleme includ, de exemplu, ecuații liniare și pătratice, inegalități liniare și pătratice, ecuații fracționale și ecuații care se reduc la cele pătratice. Principiul rezolvării cu succes a fiecăreia dintre sarcinile menționate este următorul: este necesar să se stabilească ce tip de sarcină este rezolvată, să se rețină succesiunea necesară de acțiuni care vor duce la rezultatul dorit, adică. răspundeți și urmați acești pași.

În mod evident, succesul sau eșecul în rezolvarea unei anumite probleme depinde în principal de cât de corect este determinat tipul de ecuație care se rezolvă, cât de corect este reprodusă succesiunea tuturor etapelor rezolvării acesteia. Desigur, este necesar să aveți abilități pentru a performa transformări identiceși de calcul.

O situație diferită apare cu ecuații trigonometrice. Nu este greu de stabilit faptul că ecuația este trigonometrică. Apar dificultăți la determinarea secvenței de acțiuni care ar duce la răspunsul corect.

Este uneori dificil să-i determine tipul prin apariția unei ecuații. Și fără a cunoaște tipul de ecuație, este aproape imposibil să o alegeți pe cea potrivită dintre câteva zeci de formule trigonometrice.

Pentru a rezolva ecuația trigonometrică, trebuie să încercăm:

1. aduce toate funcțiile incluse în ecuație la „aceleași unghiuri”;
2. aduceți ecuația la „aceleași funcții”;
3. factorizați partea stângă a ecuației etc.

Considera metode de bază pentru rezolvarea ecuațiilor trigonometrice.

I. Reducerea la cele mai simple ecuații trigonometrice

Schema de rezolvare

Pasul 1. expres functie trigonometrica prin componente cunoscute.

Pasul 2 Găsiți argumentul funcției folosind formule:

cos x = a; x = ±arccos a + 2πn, n ЄZ.

sin x = a; x \u003d (-1) n arcsin a + πn, n Є Z.

tan x = a; x \u003d arctg a + πn, n Є Z.

ctg x = a; x \u003d arcctg a + πn, n Є Z.

Pasul 3 Găsiți o variabilă necunoscută.

Exemplu.

2 cos(3x – π/4) = -√2.

Soluţie.

1) cos(3x - π/4) = -√2/2.

2) 3x – π/4 = ±(π – π/4) + 2πn, n Є Z;

3x – π/4 = ±3π/4 + 2πn, n Є Z.

3) 3x = ±3π/4 + π/4 + 2πn, n Є Z;

x = ±3π/12 + π/12 + 2πn/3, n Є Z;

x = ±π/4 + π/12 + 2πn/3, n Є Z.

Răspuns: ±π/4 + π/12 + 2πn/3, n Є Z.

II. Substituție variabilă

Schema de rezolvare

Pasul 1. Aduceți ecuația într-o formă algebrică în raport cu una dintre funcțiile trigonometrice.

Pasul 2 Notați funcția rezultată prin variabila t (dacă este necesar, introduceți restricții asupra t).

Pasul 3 Scrieți și rezolvați ecuația algebrică rezultată.

Pasul 4 Faceți o înlocuire inversă.

Pasul 5 Rezolvați cea mai simplă ecuație trigonometrică.

Exemplu.

2cos 2 (x/2) - 5sin (x/2) - 5 = 0.

Soluţie.

1) 2(1 - sin 2 (x/2)) - 5sin (x/2) - 5 = 0;

2sin 2(x/2) + 5sin(x/2) + 3 = 0.

2) Fie sin (x/2) = t, unde |t| ≤ 1.

3) 2t 2 + 5t + 3 = 0;

t = 1 sau e = -3/2 nu satisface condiția |t| ≤ 1.

4) sin (x/2) = 1.

5) x/2 = π/2 + 2πn, n Є Z;

x = π + 4πn, n Є Z.

Răspuns: x = π + 4πn, n Є Z.

III. Metoda de reducere a ordinii ecuațiilor

Schema de rezolvare

Pasul 1.Înlocuiți această ecuație cu una liniară folosind formulele de reducere a puterii:

sin 2 x \u003d 1/2 (1 - cos 2x);

cos 2 x = 1/2 (1 + cos 2x);

tan 2 x = (1 - cos 2x) / (1 + cos 2x).

Pasul 2 Rezolvați ecuația rezultată folosind metodele I și II.

Exemplu.

cos2x + cos2x = 5/4.

Soluţie.

1) cos 2x + 1/2 (1 + cos 2x) = 5/4.

2) cos 2x + 1/2 + 1/2 cos 2x = 5/4;

3/2 cos 2x = 3/4;

2x = ±π/3 + 2πn, n Є Z;

x = ±π/6 + πn, n Є Z.

Răspuns: x = ±π/6 + πn, n Є Z.

IV. Ecuații omogene

Schema de rezolvare

Pasul 1. Aduceți această ecuație în formă

a) a sin x + b cos x = 0 (ecuația omogenă de gradul I)

sau la vedere

b) a sin 2 x + b sin x cos x + c cos 2 x = 0 (ecuația omogenă de gradul doi).

Pasul 2Împărțiți ambele părți ale ecuației la

a) cos x ≠ 0;

b) cos 2 x ≠ 0;

și obțineți ecuația pentru tg x:

a) a tg x + b = 0;

b) a tg 2 x + b arctg x + c = 0.

Pasul 3 Rezolvați ecuația folosind metode cunoscute.

Exemplu.

5sin 2 x + 3sin x cos x - 4 = 0.

Soluţie.

1) 5sin 2 x + 3sin x cos x – 4(sin 2 x + cos 2 x) = 0;

5sin 2 x + 3sin x cos x – 4sin² x – 4cos 2 x = 0;

sin 2 x + 3sin x cos x - 4cos 2 x \u003d 0 / cos 2 x ≠ 0.

2) tg 2 x + 3tg x - 4 = 0.

3) Fie tg x = t, atunci

t2 + 3t - 4 = 0;

t = 1 sau t = -4, deci

tg x = 1 sau tg x = -4.

Din prima ecuație x = π/4 + πn, n Є Z; din a doua ecuaţie x = -arctg 4 + πk, k Є Z.

Răspuns: x = π/4 + πn, n Є Z; x \u003d -arctg 4 + πk, k Є Z.

V. Metoda de transformare a unei ecuatii folosind formule trigonometrice

Schema de rezolvare

Pasul 1. Folosind tot felul de formule trigonometrice, aduceți această ecuație la o ecuație care poate fi rezolvată prin metodele I, II, III, IV.

Pasul 2 Rezolvați ecuația rezultată folosind metode cunoscute.

Exemplu.

sinx + sin2x + sin3x = 0.

Soluţie.

1) (sin x + sin 3x) + sin 2x = 0;

2sin 2x cos x + sin 2x = 0.

2) sin 2x (2cos x + 1) = 0;

sin 2x = 0 sau 2cos x + 1 = 0;

Din prima ecuație 2x = π/2 + πn, n Є Z; din a doua ecuație cos x = -1/2.

Avem x = π/4 + πn/2, n Є Z; din a doua ecuație x = ±(π – π/3) + 2πk, k Є Z.

Ca rezultat, x \u003d π / 4 + πn / 2, n Є Z; x = ±2π/3 + 2πk, k Є Z.

Răspuns: x \u003d π / 4 + πn / 2, n Є Z; x = ±2π/3 + 2πk, k Є Z.

Abilitatea și abilitățile de a rezolva ecuații trigonometrice sunt foarte important, dezvoltarea lor necesită un efort considerabil, atât din partea elevului, cât și a profesorului.

Multe probleme de stereometrie, fizică etc. sunt asociate cu rezolvarea ecuațiilor trigonometrice.Procesul de rezolvare a unor astfel de probleme, așa cum spune, conține multe dintre cunoștințele și abilitățile care sunt dobândite la studierea elementelor de trigonometrie.

Ecuațiile trigonometrice ocupă un loc important în procesul de predare a matematicii și de dezvoltare a personalității în general.

Aveti vreo intrebare? Nu știi cum să rezolvi ecuații trigonometrice?
Pentru a obține ajutorul unui tutore - înregistrați-vă.
Prima lecție este gratuită!

site, cu copierea integrală sau parțială a materialului, este necesară un link către sursă.

Vizualizări